目录 概 前 InfoMin Sweet Spot 空间距离 Color Spaces Frequency Separation 构建 novel views 无监督 半监督 Tian Y., Sun C., Poole B., Krishnan D., Schmid C. & Isola P. What Makes for Good Views for Contrastive Learning? arXiv preprint arXiv 2005.10243, 2020. 概 是什么使得对比学…
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW论文地址:download 论文代码:download 1 Introduction 有相同兴趣的人往往通过他们的互动而紧密联系,而有不同兴趣的人则是松散的联系.因此,同一兴趣社区的人在图形上是相似的,将它们视为负对会给节点表示引入图形错误.为了解决这一问题,我们首先提出了一种基于图结构信息学习社区…
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和SimCLR 论文来源:ICLR2021 论文链接:https://arxiv.org/abs/2005.04966 论文代码:https://github.com/salesforce/PCL Part1 概述 本文提出了一个将对比学习与聚类联系起来的无监督表示学习方法:Prototypical C…
1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton 2 介绍 本文主要介绍 SimCLR框架. 定义: SimCLR:一个简单的视觉表示对比学习框架,不仅比以前的工作更出色,而且也更简单,既不需要专门的架构,也不需要储存库. 性能: 在 $ImageNet$ 上大…
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method 作者声明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:https://www.cnblogs.com/phoenixash/p/15371354.ht…
目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive Learning. NIPS, 2020. 概 本文介绍了一种利用对比学习进行对抗预训练的方法. 主要内容 思想是很简单的, 就是利用对比学习进行训练(样本的augumentation多一个\(\delta\)), 然后再通过此方法训练得到的参数进行finetune. 比较特别的是, 有三种预训练的方案:…
目录 概 主要内容 Linear Part 代码 Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Learning. In Advances in Neural Information Processing Systems, 2020. 概 这篇文章提出了对比学习结合adversarial training的一个思路. 主要内容 对比学习的强大之处在于正负样本对的构造, 一个结合adversarial trai…
目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distillation With Guided Adversarial Contrastive Learning. arXiv preprint arXiv 2009.09922, 2020. 概 本文是通过固定教师网络(具有鲁棒性), 让学生网络去学习教师网络的鲁棒特征. 相较于一般的distillation…
目录 概 主要内容 流程 projection head g constractive loss augmentation other 代码 Chen T., Kornblith S., Norouzi M., Hinton G. A Simple Framework for Contrastive Learning of Visual Representations. arXiv: Learning, 2020. @article{chen2020a, title={A Simple Fram…
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模型训练和去偏.以及文本匹配和文本检索.从这些论文的思想中借鉴了一些idea用于公司自身的业务中,最终起到了一个不错的效果. 1.Contrastive Learning with Adversarial Perturbations for Conditional Text Generation 任务…