这段时间,用到了哨兵影像,遇到了一个问题,就是哨兵影像,它的RGB/NIR波段是10米分辨率的,但是其他波段是20米和60米的,这就需要pansharpening了,所以我们需要设计一种算法来进行解决. 先把哨兵2的参数贴上来吧: 通常pansharpening方法,都是一个全色波段提供空间信息,其他低分辨率多光谱波段提供光谱信息,然后将两者进行融合,这样就得到了高分辨率多光谱影像,但是这里有一个问题,就是哨兵影像有四个“全色”波段,能不能都用到呢? 这里贴上一篇2018年的哨兵影像pansha…
并非广告~实在是太良心了,所以费时间给他们点赞一下~ SuperVessel云平台是IBM中国研究院和中国系统与技术中心基于POWER架构和OpenStack技术共同构建的, 支持开发者远程开发的免费科研云平台.除支持虚拟机和容器服务外还提供:大数据Hadoop,Spark开发环境.Python科学计算开发环境(可替代Matlab).Java Eclipse/Bluefish运行环境.C/C++运行环境 只需任意一个邮箱,1分钟就可以申请到服务器,没见过更快的了-使用之后觉得不足之处: 1.由于…
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系列函数来自动搜索深度学习模型的网络和超参数. 安装: pip install autokeras 样例: import autokeras as ak clf = ak.ImageClassifier() clf.fit(x_train, y_train) results = clf.predict…
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebos.com/cips2016.pdf 之前写过一篇中文分词总结,那么在那篇基础上,通过在CIPS2016的摘录进行一些拓展.可参考上篇:NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与比较 NLP词法.句法.语义.语篇综合系列: NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与…
CVPR2019超分领域出现多篇更接近于真实世界原理的低分辨率和高分辨率图像对应的新思路.具体来说,以前论文训练数据主要使用的是人为的bicubic下采样得到的,网络倾向于学习bicubic下采样的逆过程,这与现实世界原理不太相符.为了得到重建结果,要么采用psnr-oriented方式获得更高的psnr,要么采用perceptual-oriented获得更好的主观效果,但这与现实世界的图像系统并不吻合,有可能会造成deterioration. 下面便对CVPR2019中的超分论文做一些介绍和剖…
(转载:http://www.36dsj.com/archives/85383)机器学习与人工智能,相信大家已经耳熟能详,随着大规模标记数据的积累.神经网络算法的成熟以及高性能通用GPU的推广,深度学习逐渐成为计算机专家以及大数据科学家的研究重点.近年来,无论是图像的分类.识别和检测,还是语音生成.自然语言处理,甚至是AI下围棋或者打游戏都基于深度学习有了很大的突破.而随着TensorFlow.Caffe等开源框架的发展,深度学习的门槛变得越来越低,甚至初中生都可以轻易实现一个图像分类或者自动驾…
英伟达昨天一边发布“全球最大的GPU”,一边经历股价跳水20多美元,到今天发稿时间也没恢复过来.无数同学在后台问文摘菌,要不要抄一波底嘞? 今天用深度学习的序列模型预测股价已经取得了不错的效果,尤其是在对冲基金中.股价数据是典型的时间序列数据. 什么是序列数据呢?语音.文字等这些前后关联.存在内有顺序的数据都可以被视为序列数据. 将序列模型应用于语音和文字,深度学习在语音识别.阅读理解.机器翻译等任务上取得了惊人的成就. 具体怎么操作?效果又如何呢?来看文摘菌今天带来的这篇深度学习炒股指南. 对…
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean…
一.前述 调优对于模型训练速度,准确率方面至关重要,所以本文对神经网络中的调优做一个总结. 二.神经网络超参数调优 1.适当调整隐藏层数对于许多问题,你可以开始只用一个隐藏层,就可以获得不错的结果,比如对于复杂的问题我们可以在隐藏层上使用足够多的神经元就行了, 很长一段时间人们满足了就没有去探索深度神经网络, 但是深度神经网络有更高的参数效率,神经元个数可以指数倍减少,并且训练起来也更快!(因为每个隐藏层上面神经元个数减少了可以完成相同的功能,则连接的参数就少了) 就好像直接画一个森林会很慢,但…
作者简介:akshay pai,数据科学工程师,热爱研究机器学习问题.Source Dexter网站创办人. TensorFlow是Google的开源深度学习库,你可以使用这个框架以及Python编程语言,构建大量基于机器学习的应用程序.而且还有很多人把TensorFlow构建的应用程序或者其他框架,开源发布到GitHub上. 这次跟大家分享一些GitHub上令人惊奇的TensorFlow项目,你可以直接在你的应用中使用,或者根据自身所需进一步予以改进. TensorFlow简介 如果你已经知道…