SparkStreaming】的更多相关文章

1.简介 最近在摸索利用sparkstreaming从kafka中准实时的读取数据,并将在读取的过程中,可以做一个简单的分析,最后将分析结果写入hbase中. 2.出现的问题 (1)将从kafka中读取数据的程序打包到服务器上运行,发现需要用kafka相关的包,因此采用assembly的方法打包即可. (2)运行 spark-submit  --class "com.yiban.datacenter.MyDataCollection.KafkaToHbase" --master loc…
要完整去学习spark源码是一件非常不容易的事情,但是咱可以积少成多嘛~那么,Spark Streaming是怎么搞的呢? 本质上,SparkStreaming接收实时输入数据流并将它们按批次划分,然后交给Spark引擎处理生成按照批次划分的结果流: SparkStreaming提供了表示连续数据流的.高度抽象的被称为离散流的Dstream,可以使用kafka.Flume和Kiness这些数据源的输入数据流创建Dstream,也可以在其他Dstream上使用map.reduce.join.win…
文章发自http://www.cnblogs.com/hark0623/p/4204104.html ,转载请注明 我发现太多太多的坑要趟了… 向yarn提交sparkstreaming了,提交脚本如下,使用的是yarn-client spark-submit --driver-memory 1g --executor-memory 1g --executor-cores 1 --num-executors 3 --class com.yhx.sensor.sparkstreaming.Logi…
createStream那几个参数折腾了我好久..网上都是一带而过,最终才搞懂..关于sparkStreaming的还是太少,最终尝试成功... 首先启动zookeeper ./bin/zookeeper-server-start.sh config/zookeeper.properties & 启动kafka bin/kafka-server-start.sh config/server.properties & 创建一个topic ./kafka-topics.sh --create…
看书大概了解了下Streaming的原理,但是木有动过手啊...万事开头难啊,一个wordcount 2小时怎么都运行不出结果.是我太蠢了,好了言归正传. SparkStreaming是一个批处理的流式计算框架,适合处理实时数据与历史数据混合处理的场景(比如,你用streaming将实时数据读入处理,再使用sparkSQL提取历史数据,与之关联处理).Spark Streaming将数据流以时间片为单位分割形成RDD,使用RDD操作处理每一块数据,没块数据都会生成一个spark JOB进行处理,…
Spark Streaming揭秘 Day31 集群模式下SparkStreaming日志分析(续) 今天延续昨天的内容,主要对为什么一个处理会分解成多个Job执行进行解析. 让我们跟踪下Job调用过程. 从框架代码开始 我们从生成Job开始,generateJobs方法产生了Job,之后,提交了一个JobSet来进行处理. JobSet会根据输出情况来确定Job数量,有多少个输出就有多少个Job,在我们的演示代码中,只有一个outputDStream,所以job是一个.jobExecutor…
Spark Streaming揭秘 Day30 集群模式下SparkStreaming日志分析 今天通过集群运行模式观察.研究和透彻的刨析SparkStreaming的日志和web监控台. Day28已经分析过local模式下的日志,集群模式会比较类似,这次主要是对集群模式在的web监控台,进行统一的深度刨析. 我们从wordcount程序开始,代码如下,为了展示出SparkStreaming在集群中的运行,Batch Duration设置为5分钟. 系统作业 为了观察持续运行的情况,我们运行了…
Spark Streaming揭秘 Day6 关于SparkStreaming Job的一些思考 Job是SparkStreaming的重要基础,今天让我们深入,进行一些思考. Job是什么? 首先,有个挺重要的概念要区分下,就是SparkStreaming中的Job和Spark core的Job并不相同,可以认为SparkStreaming中的Job是一个应用程序,不同于Spark core中的Job. 从Job的的定义来看,类似于一个Java Bean,核心是其run方法,相当于Java中线…
SparkStreaming 分析 (基于1.5版本源码) SparkStreaming 介绍 SparkStreaming是一个流式批处理框架,它的核心执行引擎是Spark,适合处理实时数据与历史数据混合处理的场景.其处理流程如下: 1.    接收实时流数据并持久化 2.    将实时流以时间片切分成多个批次 3.    将每块(一个批次)的数据做为RDD,并用RDD操作处理数据 4.    每块数据生成一个SparkJob,提交Spark进行处理,并返回结果 Dstream 介绍 Spar…
概述 Word2vec是一款由谷歌发布开源的自然语言处理算法,其目的是把words转换成vectors,从而可以用数学的方法来分析words之间的关系.Spark其该算法进行了封装,并在mllib中实现. 整体流程是spark离线训练模型,可以是1小时1训练也可以1天1训练,根据具体业务来判断,sparkstreaming在线分析. 由于历史问题,spark还在用1.5.0,接口上和2.1还是有点区别,大概看了下文档,流程上差不多 spark离线训练 如下代码,通过word2vec训练出一个模型…