Transformer 本文介绍了Transformer结构, 是一种encoder-decoder, 用来处理序列问题, 常用在NLP相关问题中. 与传统的专门处理序列问题的encoder-decoder相比, 有以下的特点: 结构完全不依赖于CNN和RNN 完全依赖于self-attention机制, 是一种堆叠的self-attention 使用全连接层 逐点point-wise计算的 整个Transformer的结构图如下所示: Encoder and Decoder Stacks 如上…
常言道:男人是视觉动物.我觉得不完全对,我的理解是范围再扩大点,不管男人女人都是视觉动物.某些场合(比如面试.初次见面等),别人没有那么多的闲暇时间听你诉说过往以塑立一个关于你的完整模型.所以,第一眼,先走外貌协会的路线,打量一番,再通过望闻问切等各种手段获取关于你的大量信息(如谈吐.举止等),以快速建立起对于你的认识. 待人接物如此,搞技术也不例外,起码我是这样的.把玩了一番Hadoop的MapReduce过程,单词计数.去重.单表关联等运行的时候控制台打印出各种我看懂看不懂的信息,有了这些视…
JavaScript使用Unicode字符集.ECMAScript3要求JS的实现必须支持Unicode 2.1及后续版本,ECMAScript 5要求JS的实现支持Unicode 3及后续版本. JavaScript区分大小写. JavaScript代码建议用空格代替Tab键,因为不同IDE对Tab键的解析不完全一样. 在有些计算机硬件和软件里,无法显示或输入Unicode字符全集,为了支持老旧硬件和软件,JavaScript定义了一种特殊序列,用6个ASCII字符来代表任意16位Unicod…
目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种…
关于Hadoop已经小记了六篇,<Hadoop实战>也已经翻完7章.仔细想想,这么好的一个框架,不能只是流于应用层面,跑跑数据排序.单表链接等,想得其精髓,还需深入内部. 按照<Hadoop阅读笔记(五)——重返Hadoop目录结构>中介绍的hadoop目录结构,前面已经介绍了MapReduce的内部运行机制,今天准备入手Hadoop RPC,它是hadoop一种通信机制. RPC(Remote Procedure Call Protocol)——远程过程调用协议,它是一种通过网络…
ULMFiT 阅读笔记 概述 这篇文章从文本分类模型入手,主要提出了两点:一是预训练语言模型在大中小规模的数据集中都能提升分类效果,在小规模数据集中效果尤为显著.二是提出了多种预训练的调参方法,包括Discriminative Fine-tuning(分层微调.我自己取的名字,下同),Slanted triangular learning rates(斜三角学习率),Concat pooling(拼接池化),Gradual unfreezing(逐层解冻),双向语言模型等. 模型 本文以LSTM…
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于知网资源的词嵌入学习模型,在通用的中文词嵌入评测数据集上进行了评测,取得了较好的结果. 作者简介 该论文选自 ACL 2017,是清华大学孙茂松刘知远老师组的成果.论文的两名共同第一作者分别是牛艺霖和谢若冰. 牛艺霖,清华本科生. 谢若冰,清华研究生(2014-2017),清华本科生(2010-20…
关于论文的阅读笔记 论文的题目是“Attention-based Audio-Visual Fusion for Rubust Automatic Speech recognition”,翻译成中文为 基于注意力的视听融合技术实现鲁棒自动语音识别 (这是用谷歌翻译的.....)   摘要 文章介绍提出了一种音-视融合方案,这种方案超越了简单的特征融合,可以实现两种模式的自动对齐,进而实现了不论在嘈杂还是安静环境下识别精度的提高.文章在TCD-TIMIT和LRS2数据集上进行了测试,其中这两个数据…
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习任务都要求能处理包含丰富的元素间关联关系的图数据,例如物理系统建模.疾病分类以及文本和图像等非结构数据的学习等.图形神经网络(GNNs)是一种连接模型,通过图形节点之间的消息传递捕获图形的依赖性. 图(Graph)是一种对一组对象(node)及其关系(edge)进行建模的数据结构.由于图结构的强大表示能力,近…
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先,为什么选择这本书呢,其实,最开始我选择的是<实用软件需求分析>,可是后来大概看了<火球 UML大战需求分析>这本书前序之后啊,发现了,书中的作者一开始和我们有着一样的困扰,就象我们大学刚学到UML之后,学完一考试,考试前一复习,考完之后,就随手扔到了一边去.因为对于我们没有经历过正规…