「CQOI2015」选数】的更多相关文章

Portal Description 给出\(n,k,L,R(\leq10^9)\),求从\([L,R]\)中选出\(n\)个可相同有顺序的数使得其gcd为\(k\)的方案数. Solution 记\(f(x)\)表示gcd为\(x\)时的方案数,那么我们要求的就是\(f(k)\).设\(F(x)=\sum_{x|d}f(d)\)表示gcd为\(x\)的倍数时的方案数,即\(F(x)=(⌊\dfrac{R}{x}⌋-⌊\dfrac{L-1}{x}⌋)^n\).于是我们得到 \[\begin{al…
「CQOI2015」选数 题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入输出格式 输入格式: 输入一行,包含4个空格分开的正整数,…
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就是每个值是否可以被表示,而这个问题有点像问你一个单点的是否可以被表示,这是它的特殊性. 我们把这个整数集排序后,假设当前表示的区间是\([1,x]\),这时候在线加入\(a\) 如果\(a\le x\),显然值域变成\([1,x+a]\),否则答案假设\(x+1\) 考虑如何优化这个过程,我们可不可…
Portal Description 给出\(n(n\leq10^5)\)个任务,和总时间范围\(m(m\leq10^5)\).每个任务有开始/结束时间\(s_i,e_i(1\leq s_i \leq e_i \leq m)\)和优先级\(p_i(p_i\leq10^9)\).接下来\(m\)个询问,每次询问在时刻\(t_i\)时优先级前\(k\)大的任务的优先级之和,若\(k\)大于此时正在进行的任务总数则输出此时优先级之和.其中\(\{t_m\}\)是\(1..m\)的一个排列. Solut…
LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以放一条线段,没被线段放的地方就是需要改的数的总和 之后我们线段树维护区间最小值以及个数 我们要注意如果+1后使得一个本来在\([1,N]\)的点越出了范围,那么就要把这个区间给删掉,-1同理,要加进来 值域开成\(N + 2M\)也就是\(4.5*10^{5}\)即可 #include <bits/…
「BZOJ3505」[CQOI2014] 数三角形 这道题直接求不好做,考虑容斥,首先选出3个点不考虑是否合法的方案数为$C_{(n+1)*(m+1)}^{3}$,然后减去三点一线的个数就好了.显然不能枚举端点,我们可以考虑枚举两个点的x,y差值i,j,那么中间整点的个数为(gcd(i,j)-1),这样的正方形有多个,所以(n-i+1)*(m-j+1)*(gcd(i,j)-1)*2,乘2是因为有两条对角线,但是当i=0或j=0是就不能乘2了. #include<iostream> #inclu…
「CQOI2015」任务查询系统 传送门 好像也是板子题??? 区间修改,单点查询,考虑差分. 然后每次查询时就直接在对应的主席树上二分即可. 参考代码: #include <cstdio> #include <vector> #define rg register #define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", st…
数论/莫比乌斯反演/快速mu前缀和 比较容易想到令f[x]表示gcd=x的方案数,令g[x]表示x|gcd的方案数. 那么有$ g(d)=\sum_{d|n} f(n)$,根据莫比乌斯反演,有$f(d)=\sum_{d|n} g(n)*\mu (\frac{n}{d})$ 我一开始想的是算出g以后,倒序枚举 i ,然后枚举 i 的倍数,递推出所有的f[i]…… 因为g比较好算嘛……快速幂一下什么的…… 然而$10^9$直接吓傻我. Orz PoPoQQQ 快速求出mu的前缀和,$10^9$也照样…
题目链接:选数 这种SB题我都Wa飞了,彻底没救系列- 首先,我们可以发现1,如果我们选了两个不同的数,那么它们的\(\gcd\)不会超过\(r-l+1\).于是,我们可以设一个\(f_i\)表示任取\(n\)个数,它们的\(\gcd\)为\(ik\)的方案数,最后我们要的答案就是\(f_1\).我们考虑容斥一下,在求\(f_i\)的时候,先把\([l,r]\)中是\(ik\)倍数的数全部拿出来,然后任意选\(n\)个,这样选出来的数他们的\(\gcd\)一定是\(ik\)的倍数.于是,我们只需…
题解 这个出题人完美诠释了什么叫 用心出题,用脚造数据 算完复杂度怎么也得\(O(o^2 * 200)\)略微跑不满,但是有8个测试点虽然有障碍但是一个障碍都不在路径上,2个测试点只有10来个点在路径上 这么轻松愉快的嘛???? 如果没有障碍的话只和\(1\)的数量有关 那么我们设\(dp[i][j][k]\)表示第一维有\(i\)个\(1\)第二维有\(j\)个\(1\)第三维有\(k\)个\(1\)的方案数 转移的时候枚举哪一位增加了多少1 方案数是 \(\binom{i}{h}\cdot…