FisherYates费雪耶兹随机置乱算法】的更多相关文章

public class FisherYates { public static void main(String[] args) { int[] arr = new int[10]; // 初始有序数组 System.out.println("初始化有序数组:"); for (int i = 0; i < arr.length; i++) { arr[i] = i + 1; System.out.print(" " + arr[i]); } // 费雪耶兹置…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----…
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言…
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”. 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选取 从原始的数据集中采取有放回的抽样(bagging),构造子数据集,子数据集的数据量是和原始数据集相同的.不同子数据集的元素可以重复,同一个子数据集中的元素也可以重复. 2,待选特征的随机选取 与数据集的随机选…
最近在读<SRE Google运维解密>第20章提到数据中心内部服务器的负载均衡方法,文章对比了几种负载均衡的算法,其中随机选择算法,非常适合用 Numpy 模拟并且用 Matplotlib 画图,下面是我的代码: # 使用 numpy 模拟 GRE 中的随机选择算法,并使用 pyplot绘图 import numpy as np from numpy import random r = random.randint(1,301,size = (300,225) ) a = {} for i…
H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator H2ORandomForestEstimator 的常用方法和参数介绍: (一)建模方法: model =H2ORandomForestEstimator(ntrees=n,max_depth =m) model.train(x=random_pv.names,y='Catrgory',train…
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做…
0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstrap,生成多棵树,CART(Classification And Regression Tree)构成的.对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中.对于一个有n行的数据集,out of…
关键参数 最重要的,常常需要调试以提高算法效果的有两个参数:numTrees,maxDepth. numTrees(决策树的个数):增加决策树的个数会降低预测结果的方差,这样在测试时会有更高的accuracy.训练时间大致与numTrees呈线性增长关系. maxDepth:是指森林中每一棵决策树最大可能depth,在决策树中提到了这个参数.更深的一棵树意味模型预测更有力,但同时训练时间更长,也更倾向于过拟合.但是值得注意的是,随机森林算法和单一决策树算法对这个参数的要求是不一样的.随机森林由于…
随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数据,列方向上采用无放回随机抽样得到特征子集,并据此得到其最优切分点,这便是随机森林算法的基本原理.图 3 给出了随机森林算法分类原理,从图中可以看到,随机森林是一个组合模型,内部仍然是基于决策树,同单一的决策树分类不同的是,随机森林通过多个决策树投票结果进行分类,算法不容易出现过度拟合问题. 图 3…
这一节,在熟悉了Featue maps相关概念之后,我们将开始学习基于EKF的特征图SLAM算法. 1. 机器人,图和增强的状态向量 随机SLAM算法一般存储机器人位姿和图中的地标在单个状态向量中,然后通过一个递归预测和量测过程来估计状态参数.其中,预测阶段通过增量航迹估计来处理机器人的运动,并增加了机器人位姿不确定性的估计.当再次观测到Map中存储的特征后,量测阶段,或者叫更新阶段开始执行,这个过程可以改善整个的状态估计.当机器人在运动过程中观测到新特征时,便通过一个状态增强的过程将新观测的特…
随机森林算法是机器学习.计算机视觉等领域内应用较为广泛的一个算法.它不仅可以用来做分类(包括二分类和多分类),也可用来做回归预测,也可以作为一种数据降维的手段. 在随机森林中,将生成很多的决策树,并不像在决策树那样只生成唯一的树.随机森林在变量(列)的使用和数据(行)的使用上进行随机化,生成很多分类树,每个树都是一个独立的判断分支,互相之间彼此独立.随机森林在运算量没有显著提高的前提下提高了预测精度,并且对多元公线性不敏感,判断结果缺失数据和非平衡的数据比较稳健,可以很好地预测多达几千个解释变量…
RandomForest算法(有监督学习),可以根据输入数据,选择最佳特征组合,减少特征冗余:原理:由于随机决策树生成过程采用的Boostrap,所以在一棵树的生成过程并不会使用所有的样本,未使用的样本就叫(Out_of_bag)袋外样本,通过袋外样本,可以评估这个树的准确度,其他子树叶按这个原理评估,最后可以取平均值,即是随机森林算法的性能:特征选择原理:因为袋外样本的存在,因此不需要进行十字交叉测试(节省时间),通过依次对每个特征赋予一个随机数,观察算法性能的变化,倘若变化大,则说明该特征重…
此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错的选择. Spark是目前比较流行的分布式计算解决方案,同时支持集群模式和本地单机模式.由于其通过scala语言开发,原生支持scala,同时由于python在科学计算等领域的广泛应用,Spark也提供了python的接口. Spark的常用操作详见官方文档: http://spark.apache…
Bagging算法:  凡解:给定M个数据集,有放回的随机抽取M个数据,假设如此抽取3组,3组数据一定是有重复的,所以先去重.去重后得到3组数据,每组数据量分别是s1,s2,s3,然后三组分别训练组合成一个强模型.如下图: 随机森林算法: 一般用于大规模数据,百万级以上的. 在Bagging算法的基础上,如上面的解释,在去重后得到三组数据,那么再随机抽取三个特征属性,选择最佳分割属性作为节点来创建决策树.可以说是 随机森林=决策树+Bagging  如下图 RF(随机森林)的变种: ExtraT…
公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章<AdaBoost 算法-分析波士顿房价数据集>中,我们介绍过集成算法.集成算法中有一类算法叫做 bagging 算法. bagging 算法是将一个原始数据集随机抽样成 N 个新的数据集.然后将这 N 个新的数据集作用于同一个机器学习算法,从而得到 N 个模型,最终集成一个综合模型. 在对新的数据…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_212 有人说,如果一个人相信运气,那么他一定参透了人生.想象一下,如果你在某款moba游戏中,在装备平平,队友天坑的情况下,却刀刀暴击,在一小波gank中轻松拿下五杀,也许你会感叹自己的神操作和好运气,但其实,还有另外一种神秘的力量在支配着这一切,那就是:随机算法. 伪随机(Pseudo-Randomization) 其实,竞技游戏通常是拒绝随机性干预的,因为它干扰了玩家实际操作水平的考量.但是,应对突发情况也应该是玩家应变能…
缓存如果写满, 它必须淘汰旧值以容纳新值, 最近最少使用淘汰算法 (LRU) 是一个不错的选择, 因为你如果最近使用过某些值, 这些值更可能被保留. 你如果构造一个比缓存限制还长的循环, 当循环最后的值可以命中缓存时, LRU 就会是完美的, 但是当它无法命中缓存时, 这个缓存将失效. 缓存的淘汰算法也要降级为随机淘汰算法. 基于 sync.Map 和 map 的无序遍历机制, 带有 过期时间 的随机淘汰缓存可以非常轻松被实现. 实现 构造器 type Item struct { item in…
微信红包的架构设计简介: 原文:https://www.zybuluo.com/yulin718/note/93148 @来源于QCon某高可用架构群整理,整理朱玉华. 背景:有某个朋友在朋友圈咨询微信红包的架构,于是乎有了下面的文字(有误请提出,谢谢) 概况:2014年微信红包使用数据库硬抗整个流量,2015年使用cache抗流量. 1.微信的金额什么时候算? 答:微信金额是拆的时候实时算出来,不是预先分配的,采用的是纯内存计算,不需要预算空间存储.. 采取实时计算金额的考虑:预算需要占存储,…
<?php /** * 红包分配算法 * * example * $coupon = new Coupon(200, 5); * $res = $coupon->handle(); * print_r($res); * @author Flc <2018-04-06 20:09:53> * @see http://flc.ren | http://flc.io | https://github.com/flc1125 */ class Coupon { /** * 红包金额 * @…
2017年1月14日 14:19:14 星期六 一, 整体设计 算法有很多种, 可以自行选择, 主要的"架构" 是这样的, 用redis decr()命令去限流, 用mysql去记录各种需要的数据 二, 红包算法 简便起见, 红包金额用整数表示, 假设每个红包里边有x个糖豆, 每个人最少一个豆 一种: 每个红包的最大金额是: (剩余金额/剩余红包数)*2, 需要开始的时候预先分配给每个人一个豆 function randBean($total_bean, $total_packet)…
<?php /** * 随机红包+固定红包算法[策略模式] * copyright (c) 2016 http://blog.csdn.net/CleverCode */ //配置传输数据DTO class RangeDto { //红包总金额 public $totalMoney; //红包数量 public $num; //范围开始 public $rangeStart; //范围结算 public $rangeEnd; //生成红包策略 public $builderStrategy; /…
/** * 求一个数的平方 * @param $n */ function sqr($n){ return $n*$n; } /** * 生产min和max之间的随机数,但是概率不是平均的,从min到max方向概率逐渐加大. * 先平方,然后产生一个平方值范围内的随机数,再开方,这样就产生了一种“膨胀”再“收缩”的效果. */ function xRandom($bonus_min,$bonus_max){ $sqr = intval(sqr($bonus_max-$bonus_min)); $…
如果要想自己设计一个roguelike游戏,那么需要你有一个随机地图生成,我在indienova上看到一篇文章,描述了一个roguelike算法,然后自己用unity实现了一个下. 原文地址:随机生成 Tile Based 地图之——洞穴 原文有这个算法的各种讲解,还有动态的演示图,不理解算法原理的可以去看一下. 根据这个算法的代码: using System.Collections; using System.Collections.Generic; using UnityEngine; pu…
从一个序列里面选择第k大的数在没有学习算法导论之前我想最通用的想法是给这个数组排序,然后按照排序结果返回第k大的数值.如果使用排序方法来做的话时间复杂度肯定至少为O(nlgn). 问题是从序列中选择第k大的数完全没有必要来排序,可以采用分治法的思想解决这个问题.Randomize select 算法的期望时间复杂度可以达到O(n),这正是这个算法的迷人之处.具体的算法分析可以在<算法导论>这本书里查看. 贴出伪代码: RANDOMIZED-SELECT(A, p, r, i) if p = r…
1.对数组循环,每一项与随机的某一项位置调换 <ul id="listOne"></ul> <div id="tempOne"></div> <script type="text/javascript"> var listOne = $('#listOne'); var numberList = []; //项ul中添加 10个数字 for (var i = 0; i < 10;…
https://www.cnblogs.com/getdaydayup/p/6592154.html 使用JS编写一个方法 让数组中的元素每次刷新随机排列 法一: var arr =[1,2,3,4]; var t; for(var i = 0;i < arr.length; i++){ var rand = parseInt(Math.random()*arr.length); t = arr[rand]; arr[rand] =arr[i]; arr[i] = t; } console.lo…
我们先完毕后台PHP的流程,PHP的主要工作是负责配置奖项及相应的中奖概率,当前端页面点击翻动某个方块时会想后台PHP发送ajax请求,那么后台PHP依据配置的概率,通过概率算法给出中奖结果,同一时候将未中奖的奖项信息一并以JSON数据格式发送给前端页面. 先来看概率计算函数 function get_rand($proArr) { $result = ''; //概率数组的总概率精度 $proSum = array_sum($proArr); //概率数组循环 foreach ($proArr…
static void Main(string[] args) { ; ; double minAmount = 0.01; Random r = new Random(); ; i < num; i++) { double safeAmount = (totalAmount - (num - i) * minAmount) / (num - i); //double money = new Random().Next(Convert.ToInt32(minAmount * 100), Conv…