EM算法 EM算法是含隐变量图模型的常用参数估计方法,通过迭代的方法来最大化边际似然. 带隐变量的贝叶斯网络 给定N 个训练样本D={x(n)},其对数似然函数为: 通过最大化整个训练集的对数边际似然L(D; θ),可以估计出最优的参数θ∗.然而计算边际似然函数时涉及p(x) 的推断问题,需要在对数函数的内部进行求和(或积分) 注意到,对数边际似然log p(x; θ) 可以分解为 其中DKL(q(z)∥p(z|x; θ))为分布q(z)和后验分布p(z|x; θ)的KL散度. 由于DKL(q(…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
梯度下降(GD)是最小化风险函数.损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路,下面从公式和实现的角度对两者进行分析,如有哪个方面写的不对,希望网友纠正. 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了.其中m是训练集的记录条数,j是参数的个数. 1.批量梯度下降的求解思路如下: (1)将J(theta)对theta求偏导,得到每个theta对应的的梯度 (2)由于是…
Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之一,其训练常采用最大似然准则,且为防止过拟合,往往在目标函数中加入(可以产生稀疏性的) L1 正则.但对于这种带 L1 正则的最大熵模型,直接采用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题.本文为阅读作者 Yoshimasa Tsuruoka, Jun’chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descent Train…
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,结果是用户要么点击要么不点击. 通常两类使用类别标号0和1表示,0表示不发生,1表示发生. 问题引入 例如:有100个手机,其中有30个是你喜欢的,70个是不喜欢的.现预测你对第101个手机的喜好.这是一…
# -*- coding: cp936 -*- import numpy as np from scipy import stats import matplotlib.pyplot as plt # 构造训练数据 x = np.arange(0., 10., 0.2) m = len(x) # 训练数据点数目 x0 = np.full(m, 1.0) input_data = np.vstack([x0, x]).T # 将偏置b作为权向量的第一个分量 target_data = 2 * x…
问题的引入: 考虑一个典型的有监督机器学习问题,给定m个训练样本S={x(i),y(i)},通过经验风险最小化来得到一组权值w,则现在对于整个训练集待优化目标函数为: 其中为单个训练样本(x(i),y(i))的损失函数,单个样本的损失表示如下: 引入L2正则,即在损失函数中引入,那么最终的损失为: 注意单个样本引入损失为(并不用除以m): 正则化的解释 这里的正则化项可以防止过拟合,注意是在整体的损失函数中引入正则项,一般的引入正则化的形式如下: 其中L(w)为整体损失,这里其实有: 这里的 C…
一.回归函数及目标函数 以均方误差作为目标函数(损失函数),目的是使其值最小化,用于优化上式. 二.优化方式(Gradient Descent) 1.最速梯度下降法 也叫批量梯度下降法Batch Gradient Descent,BSD a.对目标函数求导 b.沿导数相反方向移动theta 原因: (1)对于目标函数,theta的移动量应当如下,其中a为步长,p为方向向量. (2)对J(theta)做一阶泰勒级数展开: (3)上式中,ak是步长,为正数,可知要使得目标函数变小,则应当<0,并且其…
Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯西施瓦兹公式可以证明梯度反方向是下降最快的方向. 经典的梯度下降法利用下式更新参量,其中J(θ)是关于参量θ的损失函数,梯度下降法通过不断更新θ来最小化损失函数.当损失函数只有一个global minimal时梯度下降法一定会收敛于最小值(在学习率不是很大的情况下) 上式的梯度是基于所有数据的,如果…
  Log-Linear 模型(也叫做最大熵模型)是 NLP 领域中使用最为广泛的模型之中的一个.其训练常採用最大似然准则.且为防止过拟合,往往在目标函数中增加(能够产生稀疏性的) L1 正则.但对于这样的带 L1 正则的最大熵模型,直接採用标准的随机梯度下降法(SGD)会出现效率不高和难以真正产生稀疏性等问题. 本文为阅读作者 Yoshimasa Tsuruoka, Jun'chi Tsujii 和 Sophia Ananiadou 的论文 Stochastic Gradient Descen…