K中心点算法之PAM】的更多相关文章

一.PAM聚类算法:         选用簇中位置最中心的对象,试图对n个对象给出k个划分:代表对象也被称为是中心点,其他对象则被称为非代表对象:最初随机选择k个对象作为中心点,该算法反复地用非代表对象来代替代表对象,试图找出更好的中心点,以改进聚类的质量:在每次迭代中,所有可能的对象对被分析,每个对中的一个对象是中心点,而另一个是非代表对象.对可能的各种组合,估算聚类结果的质量:一个对象Oi可以被使最大平方-误差值减少的对象代替:在一次迭代中产生的最佳对象集合成为下次迭代的中心点. 对比kme…
K-medodis与K-means比较相似,但是K-medoids和K-means是有区别的,不一样的地方在于中心点的选取,在K-means中,我们将中心点取为当前cluster中所有数据点的平均值,在 K-medoids算法中,我们将从当前cluster 中选取这样一个点——它到其他所有(当前cluster中的)点的距离之和最小——作为中心点.K-medodis算法不容易受到那些由于误差之类的原因产生的脏数据的影响,但计算量显然要比K-means要大,一般只适合小数据量. K-medoids…
聚类分析及K均值算法讲解 吴裕雄 当今信息大爆炸时代,公司企业.教育科学.医疗卫生.社会民生等领域每天都在产生大量的结构多样的数据.产生数据的方式更是多种多样,如各类的:摄像头.传感器.报表.海量网络通信等等,面对这海量结构各式各样的数据,如果单是依靠人力来完成,是件非常不现实的事,但这些数据又包含着许多对我们有很高价值的信息.面对这样的矛盾,我们必须通过一些方法来科学.高效地分析.处理这些数据,最后输出能够让人或者机器作出无差别的行为判断.聚类分析——就是解决这类问题的一种典型方法,它是基于生…
K均值算法是一类非监督学习类,其可以通过观察样本的离散性来对样本进行分类. 例如,在对如下图所示的样本中进行聚类,则执行如下步骤 1:随机选取3个点作为聚类中心. 2:簇分配:遍历所有样本然后依据每个点到最近距离进行分类.(在图 中用不同颜色标出) 3:移动聚类中心到各个分类样本的平均中心. 然后再次根据新的聚类中心划分分类簇,原理同步骤2,再执行步骤3 不断循环,直到聚类中心保持不变. 最后结果: 如果用μ1 μ2---μ k来表示聚类中心,用c 1 c 2---c m 用来存储第i个实例数据…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中心会选到一个类上,一定程度上克服了算法陷入局部最优状态.二分KMeans(Bisecting KMeans)算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大限度降低聚类代价函数(也就是误差平方和)的簇划分为两个簇.以此进行下去,直到簇的数目等于用户给定的数目k为止.以上隐含的一…
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标.K个初始聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机地选取任意k个对象作为初始聚类中心,初始地代表一个簇.该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离赋给最近的簇.当考查完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来.算法过程如下:(1)…
为了便于可视化,样本数据为随机生成的二维样本点. from matplotlib import pyplot as plt import numpy as np import random def kmeans(a, k): def randomChoose(a, k): # 从数组a中随机选取k个元素,返回一个list args = np.arange(len(a)) # 元素下标 for i in range(k): x = np.random.randint(i, len(a)) args…
测试数据展示: #coding:utf-8__author__ = 'similarface''''实现K均值算法 算法摘要:-----------------------------输入:所有数据点A,聚类个数k输出:k个聚类的中心点 随机选取k个初始的中心点repeat: 计算每个点和中心点的距离,将点分配给最近的中心簇中 计算Ck,更新簇的中心点until 中心点稳定 -----------------------------'''import sysimport randomimport…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…