020 RDD的理解】的更多相关文章

一:源码介绍RDD 1.RDD介绍 五大特性,保证了Spark的扩展性,容错性等特性. A list of partitions ====> 一个许多分区的集合,分区中包含数据 A function for computing each split ===> 为每个分区提供一个computing的函数 A list of dependencies on other RDDs ===> RDD会依赖其他RDDs, 这种特性叫做:lineage(生命线):特例:第一个RDD不依赖其他RDD,…
转自:http://www.infoq.com/cn/articles/spark-core-rdd/ 感谢张逸老师的无私分享 RDD,全称为Resilient Distributed Datasets,是一个容错的.并行的数据结构,可以让用户显式地将数据存储到磁盘和内存中,并能控制数据的分区.同时,RDD还提供了一组丰富的操作来操作这些数据.在这些操作中,诸如map.flatMap.filter等转换操作实现了monad模式,很好地契合了Scala的集合操作.除此之外,RDD还提供了诸如joi…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
前言 用Spark有一段时间了,但是感觉还是停留在表面,对于Spark的RDD的理解还是停留在概念上,即只知道它是个弹性分布式数据集,其他的一概不知 有点略显惭愧.下面记录下我对RDD的新的理解. 官方介绍  弹性分布式数据集. RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建. 问题 只要你敢问度娘RDD是什么,包你看到一大片一模一样的答案,都是说这样的概念性的东西,没有任何的价值. 我只想知道 RDD为什么是弹性 而不是 不弹性,…
RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以有许多分区(partitions),每个分区又拥有大量的记录(records). 五个特征: dependencies:建立RDD的依赖关系,主要rdd之间是宽窄依赖的关系,具有窄依赖关系的rdd可以在同一个stage中进行计算. partition:一个rdd会有若干个分区,分区的大小决定了对这个…
Spark RDD深度解析-RDD计算流程 摘要  RDD(Resilient Distributed Datasets)是Spark的核心数据结构,所有数据计算操作均基于该结构进行,包括Spark sql .Spark Streaming.理解RDD有助于了解分布式计算引擎的基本架构,更好地使用Spark进行批处理与流计算.本文以Spark2.0源代码为主,对RDD的生成.计算流程.加载顺序等作深入的解析. RDD印象 直观上,RDD可理解为下图所示结构,即RDD包含多个Partition(分…
RDD(Resilient Distributed Dataset)是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操作可以直接从内存中输入,省去了MapReduce大量的磁盘IO操作.这对于迭代运算比…
摘要: 在深度学习中,为了提升数据传输带宽和计算性能,经常会使用NCHW.NHWC和CHWN数据格式,它们代表Image或Feature Map等的逻辑数据格式(可以简单理解为数据在内存中的存放顺序).本文以百度的AI端上推理设备EdgeBoard为原型,介绍EdgeBoard选择NHWC数据格式的技术考量. EdgeBoard简介 EdgeBoard是百度基于FPGA芯片研发的嵌入式AI解决方案,高性能的加速引擎可提供3.6Tops的强大算力,完整的嵌入式参考设计使硬件集成轻松便捷.目前Edg…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformations 两种操作之行动Actions 惰性求值 RDD持久化Persistence 理解闭包Understanding closures 共享变量Shared Variables 总结 Working with Key-Value Pairs.Shuffle operations.patition…