Apache Spark MLlib是Apache Spark体系中重要的一块拼图:提供了机器学习的模块.只是,眼下对此网上介绍的文章不是非常多.拿KMeans来说,网上有些文章提供了一些演示样例程序,而这些程序基本和Apache Spark 官网上的程序片断类似:在得到训练模型后,差点儿都没有展示怎样使用该模型.程序运行流程.结果展示以及举例測试数据等部分. 笔者依据Apache Spark官网上的程序片断.写了一个完整的调用MLlib KMeans库的測试程序,并成功在Spark 1.0 +…
package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function;…
一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. 二.步骤 1.为待聚类的点寻找聚类中心. 2.计算每个点到聚类中心的距离,将每个点聚类到该点最近的聚类中. 3.计算每个聚类中所有点的坐标平均值,并将这个平均值作为新的聚类中心. 4.反复执行步骤2,3,直到聚类中心不再进行大范围移动或者聚类迭代次数达到要求为止. 三.演示 四.初始中心点选择 1…
MLlib 是构建在 Spark 上的分布式机器学习库,充分利用了 Spark 的内存计算和适合迭代型计算的优势,将性能大幅度提升.同时由于 Spark 算子丰富的表现力, 让大规模机器学习的算法开发不再复杂. MLlib 是 一 些 常 用 的 机 器 学 习 算 法 和 库 在Spark 平台上的实现.MLlib 是 AMPLab 的在研机器学习项目 MLBase 的底层组件. MLBase 是一个机器学习平台,详细见 http://www.cnblogs.com/zlslch/p/5726…
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Learning),相信很多计算机从业者都会对这个技术方向感到兴奋.然而学习并使用机器学习算法来处理数据却是一项复杂的工作,需要充足的知识储备,如概率论,数理统计,数值逼近,最优化理论等.机器学习旨在使计算机具有人类一样的学习能力和模仿能力,这也是实现人工智能的核心思想和方法.传统的机器学习算法,由于技术和…
欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 机器学习算法是的主要目的是找到最能够对数据做出合理解释的模型,这个模型是假设函数,一步步的推导基本遵循这样的思路 假设函数 为了找到最好的假设函数,需要找到合理的评估标准,一般来说使用损失函数来做为评估标准 根据损失函数推出目标函数 现在问题转换成为如何找到目标函数的最优解,也就是目标函数的最优化…
算法跟传统的kmeans的区别主要在于:kmeans||的k个中心的不是随机初始化的.而是选择了k个彼此"足够"分离的中心. org.apache.spark.mllib.clustering.KMeans private[org.apache.spark.mllib.clustering] def initKMeansParallel(data: RDD[VectorWithNorm]): Array[VectorWithNorm] Initialize a set of clust…
算法说明 聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异.聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE.CHAMELEON等).网格算法(STING.WaveCluster等),等等. 较权威的聚类问题定义:所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,…
本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新技能,并重组已学习的知识结构使之不断改善自身. MLlib是Spark提供的可扩展的机器学习库.MLlib已经集成了大量机器学习的算法,由于MLlib涉及的算法众多,笔者只对部分算法进行了分析,其余算法只是简单列出公式,读者如果想要对公式进行推理,需要自己寻找有关概率论.数理统计.数理分析等方面的专…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…