【HDU1402】【FFT】A * B Problem Plus】的更多相关文章

[问题描述]给出n个数qi,给出Fj的定义如下:令Ei=Fi/qi.试求Ei.[输入格式]输入文件force.in包含一个整数n,接下来n行每行输入一个数,第i行表示qi.[输出格式]输出文件force.out有n行,第i行输出Ei.与标准答案误差不超过1e-2即可.[样例输入]54006373.88518415375036.4357591717456.4691448514941.0049121410681.345880[样例输出]-16838672.6933439.7937509018.566…
[BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每个手环上各有 n 个装饰物,并且每个装饰物都有一定的亮度.但是在她生日的前一天,我的室友突 然发现他好像拿错了一个手环,而且已经没时间去更换它了!他只能使用一种特殊的方法,将其中一个手环中所有 装饰物的亮度增加一个相同的自然数 c(即非负整数).并且由于这个手环是一个圆,可以以任意的角度旋转它, 但…
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\] 根据题目给出的定义,带入\(E\)中 \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\] 形式稍微改变了一下,本质一样 需要处理…
[LOJ6067][2017 山东一轮集训 Day3]第三题 FFT 题目大意 给你 \(n,b,c,d,e,a_0,a_1,\ldots,a_{n-1}\),定义 \[ \begin{align} x_k&=b\times c^{4k}+d\times c^{2k}+e\\ f(x)&=\sum_{i=0}^{n-1}a_ix^i \end{align} \] 求 \(f(x_0),f(x_1),\ldots,f(x_{n-1})\). 对 \({10}^6+3\) 取模. 题解 直接多…
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过1e-2即可. 输入样例 5 4006373.885184 15375036.435759 1717456.469144 8514941.004912 1410681.345880 输出样例 -16838672.693 3439.793 7509018.566 4595686.886 1090304…
[LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标记(猎人印记???) 如果在一次选择的时候选中了一个已经被打过标记的人,那么我们就重新做一次选择. 这样显然没有任何影响. 现在考虑如何求第一个人最后一个被打上标记的概率. 我们容斥一下,枚举一下哪些人会在\(1\)之后被选择,那么容斥系数就是\((-1)\)的人数次方. 那么对于钦定的在\(1\)…
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\) 边界为 \(f[0]=1\) .答案模 \(998244353\) . 输入输出格式 输入格式: 第一行一个正整数 \(n\) . 第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,…
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个,其中\(c\in A\),且\(c\)个儿子是叶子,另外\(2\)个存在子树,且两种点的链接的边是不同的,求方案数. 那么就考虑一个暴力\(dp\),设\(f[i]\)表示有\(i\)个节点的树的个数. 那么枚举它两个有子树的子树大小,然后把编号给取出来,得到: \[f[i]=\frac{1}{2}…
[LOJ#575][LNR#2]不等关系(容斥,动态规划,分治FFT) 题面 LOJ 题解 一个暴力\(dp\),设\(f[i][j]\)表示考虑完了前\(i\)个位置,其中最后一个数在前面所有数中排名是第\(j\)大,那么转移的时候枚举一下当前数是第几大,并且满足不等式的限制就可以了,然后拿前缀和优化一下就可以做到\(O(n^2)\). 我们把所有连续的<看成一段,这样子题目就变成了每次要选出一段连续的上升序列,然后相邻两个连续段之间必须满足前一段的末尾要大于后一段的开头. 显然这个大于号是不…
P4721 [模板]分治 FFT 链接 luogu 题目描述 给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其中 \[f[i]=\sum_{j=1}^if[i-j]g[j]\] 边界为 \(f[0]=1\) .答案模 \(998244353\) . 思路 分治+ntt.跑900+ms 其实limit只要设到区间长度就可以了,其他的是用不到的.对前半部分也没得影响. 代码 #include <bits/std…