matlab自带princomp(PCA降维方式)】的更多相关文章

matlab 中自带的函数就不必怀疑. princomp:principal componet analysis (PCA). [COEFF,SCORE,latent,tsquare]=princomp(X); 参数: %%%%%%%%%%%%%%%%%% INPUT: X是数据:n*p,其中n代表样本个数,p代表特征维数 %%%%%%%%%%%%%%%%%% OUTPUT: COEFF: 协方差 p*p,投影矩阵 SCORE:投影之后的数据.如果样本个数<=特征维数,有一个有意思的 现象:SC…
http://blog.json.tw/using-matlab-implementing-pca-dimension-reduction 設有m筆資料, 每筆資料皆為n維, 如此可將他們視為一個mxn matrix.若資料的維度太大時, 可能不利於分析, 例如這m筆資料用作機器學習. PCA的想法是算出這mxn matrix的斜方差矩陣, 此矩陣大小為nxn, 計算此矩陣n個特徵值(eigen value)及其對應的特徵向量(eigen vector), 依eigen value大小由小到大排…
MATLAB实例:PCA降维 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. iris数据 5.1,3.5,1.4,0.2,1 4.9,3.0,1.4,0.2,1 4.7,3.2,1.3,0.2,1 4.6,3.1,1.5,0.2,1 5.0,3.6,1.4,0.2,1 5.4,3.9,1.7,0.4,1 4.6,3.4,1.4,0.3,1 5.0,3.4,1.5,0.2,1 4.4,2.9,1.4,0.2,1 4.9,3.1,1.5,0.1…
之前对PCA的原理挺熟悉,但一直没有真正使用过.最近在做降维,实际用到了PCA方法对样本特征进行降维,但在实践过程中遇到了降维后样本维数大小限制问题. MATLAB自带PCA函数:[coeff, score, latent, tsquared] = pca(X) 其中,X是n*p的,n是样本个数,p是特征维数. (1)coeff矩阵是返回的转换矩阵,就是把原始样本转换到新空间中的转换矩阵. (2)score是原始样本矩阵在新样本空间中的表示,也就是原始样本乘上转换矩阵,但是还不是直接乘,要减去一…
前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法步骤.主要介绍PCA算法的算法流程: 4)应用实例.针对PCA的实际应用,列出两个应用实例: 5)常见问题补充.对于数据预处理过程中常遇到的问题进行补充: 6)扩展阅读.简要介绍PCA的不足,并给出K-L变换…
K-Means算法 非监督式学习对一组无标签的数据试图发现其内在的结构,主要用途包括: 市场划分(Market Segmentation) 社交网络分析(Social Network Analysis) 管理计算机集群(Organize Computer Clusters) 天文学数据分析(Astronomical Data Analysis) K-Means算法属于非监督式学习的一种,算法的输入是:训练数据集$\{x^{(1)},x^{(2)},\ldots, x^{(m)}\}$(其中$x^…
之前总结过关于PCA的知识:深入学习主成分分析(PCA)算法原理.这里打算再写一篇笔记,总结一下如何使用scikit-learn工具来进行PCA降维. 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计算量,耗费时间和资源.所以我们通常会对数据重新变换一下,再跑模型.数据变换的目的不仅仅是降维,还可以消除特征之间的相关性,并发现一些潜在的特征变量. 降维算法由很多,比如PCA…
平台:matlab2016b matlab自带一个cifar10Net工具可用于深度学习. 图片标注 这里使用的是matlab自带的工具trainingImageLabeler对图像进行roi的标注. 选择AddImages将要训练的图片放进去(可以放入多张图片),在ROI Label区域右键可以选择改变label 的color和name,如果要训练多个类,也可以点击Add ROI Label来添加label. 所有图像标注完成后点击Export ROIs后会得到一个table(或stuct)变…
pca是一种黑箱子式的降维方式,通过映射,希望投影后的数据尽可能的分散, 因此要保证映射后的方差尽可能大,下一个映射的方向与当前映射方向正交 pca的步骤: 第一步: 首先要对当前数据(去均值)求协方差矩阵,协方差矩阵= 数据*数据的转置/(m-1) m表示的列数,对角线上表示的是方差,其他位置表示的是协方差 第二步:需要通过矩阵对角化,使得协方差为0,只存在对角线方向的数据,这个时候就能得到我们的特征值和特征向量 第三步: 将当前数据*特征向量就完成了降维工作,特征值/特征值之和, 可以表示特…
转载地址:http://blog.csdn.net/watkinsong/article/details/38536463 1. 前言 PCA : principal component analysis ( 主成分分析) 最近发现我的一篇关于PCA算法总结以及个人理解的博客的访问量比较高, 刚好目前又重新学习了一下PCA (主成分分析) 降维算法, 所以打算把目前掌握的做个全面的整理总结, 能够对有需要的人有帮助. 自己再看自己写的那个关于PCA的博客, 发现还是比较混乱的, 希望这里能过做好…