Visualizing Data using t-SNE】的更多相关文章

目录 概 主要内容 Stochastic Neighbor Embedding t-SNE Der Maaten L V, Hinton G E. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008: 2579-2605. 概 t-sne是一个非常经典的可视化方法. 主要内容 我们希望, 将高维数据\(\mathcal{X}=\{x_1,x_2,\ldots,x_n\}\)映射到一个低维空间\(\…
It’s time to live up to D3’s true name and potential by integrating some real data into your visualization. This lesson introduces the fundamental concepts of enter, update, and exit selections, topics essential for being successful with D3. var scor…
In two previous blog posts I discussed some techniques for visualizing relationships involving two or three variables and a large number of cases. In this tutorial I will extend that discussion to show some techniques that can be used on large datase…
I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had been following the blog for some time and liked the community, but did not know what to expect as an intern. The initial few days were good – all the in…
http://www.datakit.cn/blog/2017/02/05/t_sne_full.html t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来.此外,t-SNE 是一种非线性降维算法,非常适用于高维数据降维到2维或者3维,进行可视化. t-SNE是由SNE(Stochastic Neighbor Emb…
本文仅对常见的无监督学习算法进行了简单讲述,其他的如自动编码器,受限玻尔兹曼机用于无监督学习,神经网络用于无监督学习等未包括.同时虽然整体上分为了聚类和降维两大类,但实际上这两类并非完全正交,很多地方可以相互转化,还有一些变种的算法既有聚类功能又有降维功能,一些新出现的和尚在开发创造中的无监督学习算法正在打破聚类和降维的类别划分.另外因时间原因,可能有个别小错误,如有发现还望指出. 一.聚类(clustering) 1.k-均值聚类(k-means) 这是机器学习领域除了线性回归最简单的算法了.…
Deep Clustering Algorithms 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文研究路线:深度自编码器(Deep Autoencoder)->Deep Embedded Clustering(DEC)->Improved Deep Embedded clustering(IDEC)->Deep Convolutional Embedded Clustering(DCEC)->Deep Fuzzy K-mean…
Atitit.attilax软件研发与项目管理之道 1. 前言4 2. 鸣谢4 3. Genesis 创世记4 4. 软件发展史4 5. 箴言4 6. 使徒行传 4 7. attilax书 4 8. 启示录4 9. 技术标准的7条原则4 9.1. 后向兼容性4 10. 软件之道5 11. 计算机科学导论(原书第3版5 12. 数字电路5 13. 通用管理学5 14. 项目管理5 15. 团队建设与人力资源管理5 16. 软件工程5 16.1. 软件编写5 16.2. 软件构件化理论与技术5 16…
[it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Objective-C to develop iPhone games http://it-ebooks.info/book/3544/Learning Web App Development || Build Quickly with Proven JavaScript Techniques http:…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…