Tensorflow 多gpu训练】的更多相关文章

Tensorflow可在训练时制定占用那几个gpu,但如果想真正的使用多gpu训练,则需要手动去实现. 不知道tf2会不会改善一下. 具体参考:https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/6.2_multigpu_cnn.html https://jhui.github.io/2017/03/07/TensorFlow-GPU/ https://zhuanlan.zhihu.com/p/75195049…
在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢. 用如下代码可检测tensorflow的能使用设备情况: from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) 查看是否只有CPU可用,发现不是,有GPU可用,但是为什么GPU利用率极低并且只有一个GPU在使用,另一个GPU利用率为0, 发现在启动时有一行报错: Could not load…
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. import tensorflow as tf with tf.device('/cpu:0'): a = tf.constant ([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant ([1.0, 2.0, 3.0], shape=[3], nam…
TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... with tf.device('/gpu:1'): ... with tf.device('/cpu:0'): ... 2.输出devices的信息 在指定devices的时候往往不知道具体的设备信息,这时可用下面的代码查看对应的信息 进入Python环境 from tensorflow.python.c…
查看GPU-ID CMD输入: nvidia-smi 观察到存在序号为0的GPU ID 观察到存在序号为0.1.2.3的GPU ID 在终端运行代码时指定GPU 如果电脑有多个GPU,Tensorflow默认全部使用.如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES 命令行输入: # 指定采用1号GPU运行*.py CUDA_VISIBLE_DEVICES=1 python *.py Environment Variable Syntax Results CUDA_VIS…
关于多gpu训练,tf并没有给太多的学习资料,比较官方的只有:tensorflow-models/tutorials/image/cifar10/cifar10_multi_gpu_train.py 但代码比较简单,只是针对cifar做了数据并行的多gpu训练,利用到的layer.activation类型不多,针对更复杂网络的情况,并没有给出指导.自己摸了不少坑之后,算是基本走通了,在此记录下 一.思路 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU.多G…
建议比对『MXNet』第七弹_多GPU并行程序设计 一.tensorflow GPU设置 GPU指定占用 gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 上面分配给tensorflow的GPU显存大小为:GPU实际显存*0.7. GPU模式禁用 import os os.environ…
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job:job又有:ps.worker两种,分别用于参数服务.计算服务,组成cluster. 同步更新 各个用于并行计算的电脑,计算完各自的batch 后,求取梯度值,把梯度值统一送到ps服务机器中,由ps服务机器求取梯度平均值,更新ps服务器上的参数…
使用Keras训练具有多个GPU的深度神经网络(照片来源:Nor-Tech.com). 摘要 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络. 使用多个GPU使我们能够获得准线性加速. 为了验证这一点,我们在CIFAR-10数据集上训练了MiniGoogLeNet. 使用单个GPU,我们能够获得63秒的时间段,总训练时间为74分10秒. 然而,通过使用Keras和Python的多GPU训练,我们将训练时间减少到16秒,总训练时间为19m3s. 使用Keras启…
[开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果,或者是需要并行训练数据的时候就会显示OOM显存容量不足的错误.以下简称在训练一个任务的时候需要去测试结果,或者是需要并行训练数据为进行新的运算任务. 首先介绍下TensorFlow&Keras GPU使用的机制:TensorFlow&Keras会在有GPU可以使用时,自动将数据与运算放到GP…
0.深入理解GPU训练加速原理 我们都知道用GPU可以加速神经神经网络训练(相较于CPU),具体的速度对比可以参看我之前写的速度对比博文: [深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU) GPU是如何加速的呢? 我打算从两个方面来解答: 单个GPU较于CPU加速: 在训练网络中,其实大量的运算资源都消耗在了数值计算上面,大部分网络训练的过程都是1.计算loss,2.根据loss求梯度,3.再根据梯度更新参数(梯度下降原理).无论在GPU还是CPU中,都是不断重复123步.但是由…
GPU版的tensorflow在模型训练时遇到Blas GEMM launch failed错误,或者keras遇到相同错误(keras 一般将tensorflow作为backend,如果安装了GPU版本的tensorflow,那么在使用keras时会优先使用GPU),类似报错如下: InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(300, 1), b.shape=(1, 10), m=300…
本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.…
Setup Tensorflow with GPU on OSX 10.11 环境描述 电脑:MacBook Pro 15.6 CPU: 2.7GHz 显卡: GT 650m 系统:OSX 10.11 Python版本:2.7 Using Anaconda and pip to install tensorflow 安装Tensorflow依赖项 安装brew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Hom…
一.安装cuda 具体安装过程见我的另一篇博客,ubuntu16.04下安装配置深度学习环境 二.安装tensorflow 1.具体安装过程官网其实写的比较详细,总结一下的话可以分为两种:安装release版本和源码编译安装.因为源码编译安装比较繁琐,且需要安装谷歌自己的编译器bazel,所以我选择安装编译好的. 2.我写这篇博客的时候tensorflow更新到了1.4.0,安装编译好的一定看版本,因为每个版本依赖的底层库是不一样的. 1.4.0版本安装之前需要安装CUDA-8,cuDNN v6…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
一.问题 使用deeplearning4j进行GPU训练时,可能会出现java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path错误. 二.错误 15:43:26.389 [main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] 15:43:26.390 [main]…
本文转载自:https://blog.csdn.net/qq_30520759/article/details/78947034 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_30520759/article/details/78947034 本文主要是通过tensorflow官网的教程来实现安装,如果无法安装的话也可以试着用源码去安装(源码安装相对比较复杂不推荐). 1.前期的环境查询准备 1.1查看tensorflow的对于系统的基本…
本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文http://mp.blog.csdn.net/postedit/79307696 此博文是在上文安装CUDA/cuDNN的基础上的个人填坑总结,欢迎指教. CUDA CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是…
Google TensorFlow for GPU安装.配置大坑 从本周一开始(12.05),共4天半的时间,终于折腾好Google TensorFlow for GPU版本,其间跳坑无数,摔得遍体鳞伤,曾一度怀疑自己廉颇老矣,不能饭也:后,凭借自己多年积累得还算扎实的基本功,终于从无数个坑中爬出,百转千回,成功安装了TensorFLow,如下图: 题外话,图中a+b的输出结果为42是有意为之,因为<银河系漫游指南>中关于生命.宇宙及一切问题的终极答案就是42 先小小庆祝一下,然后再把其中几个…
Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从图象的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统.从去年十一月开源至今一年多一点的时间里,该项目已经收获了40000+的star和18000+的fork,…
1.准备工作 1.1 确保GPU驱动已经安装 lspci | grep -i nvidia 通过此命令可以查看GPU信息,测试机已经安装GPU驱动…
不多说,直接上干货! You must choose one of the following types of TensorFlow to install: TensorFlow with CPU support only. If your system does not have a NVIDIA® GPU, you must install this version. Note that this version of TensorFlow is typically much easier…
Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从图象的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统.从去年十一月开源至今一年多一点的时间里,该项目已经收获了40000+的star和18000+的fork,…
1.下载python3.5.2版本并安装(必须是3.5版本,而且3.5后不带字母的版本) 2.使用下面的地址下载tensorflow的GPU版本 http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 3.以及tensorflow的依赖protubuf,还有其它比如numpy,scipy等,cuda是cuda8.0的44版本 4.安装cuda8.0,如果有报警信息也是可以装的(如截图) 安装完后看环境变量里有以下两项就表明cuda安装成功! 5.下载与c…
re 1. TensorFlow查看GPU信息; end…
Windows 10 Tensorflow 2 gpu正式版安装和更新日志 Tensorflow 2.0.0 released on2019年10月1日星期二 Link: https://github.com/tensorflow/tensorflow/releases/tag/v2.0.0 本日志是win 10下tf2.0.0正式版的重新安装/更新的精确技术文档. Steps as follows: Step 1: enter into tf installing folder C:\Prog…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/article/details/87186613这里记录用pytorch 多GPU训练 踩过的许多坑   仅针对单服务器多gpu 数据并行 而不是 多机器分布式训练 一.官方思路包装模型 这是pytorch 官方的原理图  按照这个官方的原理图  修改应该参照 https://blog.csdn.net/qq…
前言 在数据越来越多的时代,随着模型规模参数的增多,以及数据量的不断提升,使用多GPU去训练是不可避免的事情.Pytorch在0.4.0及以后的版本中已经提供了多GPU训练的方式,本文简单讲解下使用Pytorch多GPU训练的方式以及一些注意的地方. 这里我们谈论的是单主机多GPUs训练,与分布式训练不同,我们采用的主要Pytorch功能函数为DataParallel而不是DistributedParallel,后者为多主机多GPUs的训练方式,但是在实际任务中,两种使用方式也存在一部分交集.…