好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pmod{d}\end{matrix}\right.$$ 不难发现需要满足$gcd(b,d)|(c-a)$才有解. 结合后的模数一定是$lcm(b,d)$.然后扩展gcd合并就行了. 中间过程会超过$10^18$,需要快速乘. 代码: #include<bits/stdc++.h> using nam…
题目链接 LOJ 洛谷 rank前3无压力(话说rank1特判打表有意思么) \(x*atk[i] - y*p[i] = hp[i]\) 对于每条龙可以求一个满足条件的\(x_0\),然后得到其通解\(x[i] = x_0 + p[i]/gcd*k\). 怎么合并所有龙的通解?可以直接写成 \(Ans\equiv x_0(mod\ p[i]/gcd)\),用扩展中国剩余定理合并即可. 所有\(p[i]=1\)时要特判.(为啥呢...反正我知道它不对...) 所有\(p[i]=hp[i]\)时同余…
题目链接: 洛谷 BZOJ LOJ 题目大意:这么长的题面,就饶了我吧emmm 这题第一眼看上去没法列出同余方程组.为什么?好像不知道用哪把剑杀哪条龙…… 仔细一看,要按顺序杀龙,所以获得的剑出现的顺序也是固定的. 那么如果能把所有龙杀死,就能模拟出哪把剑杀那条龙了. (以下设所有除 $n,m$ 外的数的最大值为 $v$) $O(nm)$? 不,发现这里用剑的限制实际上是给出一个上界,来用lower_bound的. 插入也不要太暴力.我们想到什么?手写平衡树multiset! 这一部分复杂度是…
题目链接: 洛谷 题目大意:求同余方程组 $x\equiv b_i(mod\ a_i)$ 的最小正整数解. $1\leq n\leq 10^5,1\leq a_i\leq 10^{12},0\leq b_i\leq 10^{12},b_i<a_i$,保证有解,答案不超过 $10^{18}$. (其实我没打成方程组形式是因为我 $latex$ 太差) 既然是模板就直接讲方法.假设不一定有解. 方法:每次将前 $i-1$ 个方程合并后的方程与第 $i$ 个方程合并,直到 $n$ 个方程全部合并完.…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一直回复$p_{i}$的血量,只有在攻击后会回血),杀死一条龙当且仅当攻击结束后或回复血量之后血量为$0$,杀死一条龙会获得一个新的武器.现在要求对每条龙攻击固定次数$x$求出最小的$x$,使所有龙都能被杀死. 因为每次选择的武器是固定的,所以只要用$multiset$存当前剩下的武器然后每次按题目规…
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{*})\)后龙的血量恰好为\(0\).那么根据题意我们可以列出方程: \[atk_i*x\equiv hp_i(mod \ p_i)\] 这个形式是不是很像中国剩余定理的形式:\(x\equiv b_i(mod \ a_i)\). 事实上我们可以直接将这个方程看做一个同余方程,即\[atk_i*x+p…
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{cases}x&\equiv&x_1&\pmod {p_1}\\x&\equiv&x_2&\pmod {p_2}\\ &&\vdots\\x&\equiv&x_n&\pmod {p_n}\end{cases}$$ 求解 $…
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1}b[j]$ ,$ res$是前$ i-1 $个方程的最小解 则$ res+x*M$ 是前 $i-1 $个方程的通解 那么我们求的就是 $res+x*M ≡ a[i] (mod b[i])$ $<=> x*M - y*b[i] = a[i]-res$ 用exgcd求出的解为 t (当且仅当 gcd…
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\equiv a_n(mod\ m_n)\end{matrix} \] 在模数互质的情况下,解为 \[ x=\sum_ia_iM_iM_i^{-1}(mod M) \] 其中\(M=\prod_{i}m_i\),\(M_i=\frac{M}{m_i}\),\(M_i^{-1}\)为\(M_i\)在模\(m…