本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1. Kafka-connector概述及FlinkKafkaConsumer(kafka source) 1.1回顾kafka 1.最初由Linkedin 开发的分布式消息中间件现已成为Apache顶级项目 2.面向大数据 3.基本概念: 1.Broker 2.Topic 3.Partition 4.Pro…
Kafka 简介 Apache Kafka是一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,LinkedIn于2010年贡献给了Apache基金会并成为顶级开源项目.Kafka用于构建实时数据管道和流式应用程序.它具有水平扩展性.容错性.极快的速度,目前也得到了广泛的应用. Kafka不但是分布式消息系统而且也支持流式计算,所以在介绍Kafka在Apache Flink中的应用之前,先以一个Kafka的简单示例直观了解什么是Kafka. 安装 本篇不是系统的,详尽的介绍Ka…
综述: 在Flink中DataStream程序是在数据流上实现了转换的常规程序. 1.示范程序 import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streamin…
Kakfa揭秘 Day4 Kafka中分区深度解析 今天主要谈Kafka中的分区数和consumer中的并行度.从使用Kafka的角度说,这些都是至关重要的. 分区原则 Partition代表一个topic的分区,可以看到在构造时注册了zookeeper,也就是说kafka在分区时,是被zk管理的. 在实际存储数据时,怎么确定分区. 咱们从kafka的设计开始,为了完成高吞吐性,关键有两点设计: 使用了磁盘操作系统级的页page的访问,据说在顺序读写时比使用内存速度更快. 使用Topic进行分布…
维基百科在 IRC 频道上记录 Wiki 被修改的日志,我们可以通过监听这个 IRC 频道,来实时监控给定时间窗口内的修改事件.Apache Flink 作为流计算引擎,非常适合处理流数据,并且,类似于 Hadoop MapReduce 等框架,Flink 提供了非常良好的抽象,使得业务逻辑代码编写非常简单.我们通过这个简单的例子来感受一下 Flink 的程序的编写. 通过 Flink Quickstart 构建 Maven 工程 Flink 提供了 flink-quickstart-java…
在本文中,我们将从零开始,教您如何构建第一个Apache Flink (以下简称Flink)应用程序. 开发环境准备 Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上.为了开发 Flink 应用程序,在本地机器上需要有 Java 8.x 和 maven 环境. 如果有 Java 8 环境,运行下面的命令会输出如下版本信息: $ java -versionjava version "1.8.0_65" Java(TM) SE Runtime Envir…
转载自 huxihx,原文链接 Apache Flink Kafka consumer Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依…
本文根据 Apache Flink 系列直播课程整理而成,由 Apache Flink Contributor.网易云音乐实时计算平台研发工程师岳猛分享.主要分享内容为 Flink Job 执行作业的流程,文章将从两个方面进行分享:一是如何从 Program 到物理执行计划,二是生成物理执行计划后该如何调度和执行. Flink 四层转化流程 Flink 有四层转换流程,第一层为 Program 到 StreamGraph:第二层为 StreamGraph 到 JobGraph:第三层为 JobG…
作者介绍:董亭亭,快手大数据架构实时计算引擎团队负责人.目前负责 Flink 引擎在快手内的研发.应用以及周边子系统建设.2013 年毕业于大连理工大学,曾就职于奇虎 360.58 集团.主要研究领域包括:分布式计算.调度系统.分布式存储等系统. 本文主要分享Flink connector相关内容,分为以下三个部分的内容:第一部分会首先介绍一下Flink Connector有哪些.第二部分会重点介绍在生产环境中经常使用的kafka connector的基本的原理以及使用方法.第三部分答疑环节,看…
前言 如今,许多用于分析大型数据集的开源系统都是用 Java 或者是基于 JVM 的编程语言实现的.最着名的例子是 Apache Hadoop,还有较新的框架,如 Apache Spark.Apache Drill.Apache Flink.基于 JVM 的数据分析引擎面临的一个常见挑战就是如何在内存中存储大量的数据(包括缓存和高效处理).合理的管理好 JVM 内存可以将 难以配置且不可预测的系统 与 少量配置且稳定运行的系统区分开来. 在这篇文章中,我们将讨论 Apache Flink 如何管…
Flink 序列化机制 https://t.zsxq.com/JaQfeMf 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac 上搭建 Flink 1.6.0 环境并构建运行简单程序入门 3.Flink 从0到1学习 -- Flink 配置文件详解 4.Flink 从0到1学习 -- Data Source 介绍 5.Flink 从0到1学习 -- 如何自定义 Data Source ? 6.Flink 从0到1学习 -- Da…
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息…
原文链接:Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息顺序传输 同时支持离线数据处理和实时数据处理 为什么要用消息系统 解耦在项目启动之初来预测将来项目会碰到…
Flink提供了Kafka connector用于消费/生产Apache Kafka topic的数据.Flink的Kafka consumer集成了checkpoint机制以提供精确一次的处理语义.在具体的实现过程中,Flink不依赖于Kafka内置的消费组位移管理,而是在内部自行记录和维护consumer的位移. 用户在使用时需要根据Kafka版本来选择相应的connector,如下表所示: Maven依赖 支持的最低Flink版本 Kafka客户端类名 说明 flink-connector…
01 Mar 2018 Piotr Nowojski (@PiotrNowojski) & Mike Winters (@wints) This post is an adaptation of Piotr Nowojski’s presentation from Flink Forward Berlin 2017. You can find the slides and a recording of the presentation on the Flink Forward Berlin we…
https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发…
 2016-04-30 22:24:39    Yanjun Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为他们它们所提供的SLA是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理,所以在实现的时候通常是分别给出两套实现方法,或者通过一个独…
一.设计思想及介绍 基本思想:“一切数据都是流,批是流的特例” 1.Micro Batching 模式 在Micro-Batching模式的架构实现上就有一个自然流数据流入系统进行攒批的过程,这在一定程度上就增加了延时.具体如下示意图: 2.Native Streaming 模式 Native Streaming 计算模式每条数据的到来都进行计算,这种计算模式显得更自然,并且延时性能达到更低.具体如下示意图: 很明显Native Streaming模式占据了流计算领域 "低延时" 的核…
摘要: Apache Flink 的命脉 "命脉" 即生命与血脉,常喻极为重要的事物.系列的首篇,首篇的首段不聊Apache Flink的历史,不聊Apache Flink的架构,不聊Apache Flink的功能特性,我们用一句话聊聊什么是 Apache Flink 的命脉?我的答案是:Apache Flink 是以"批是流的特例"的认知进行系统设计的. Apache Flink 的命脉 "命脉" 即生命与血脉,常喻极为重要的事物.系列的首篇,…
https://www.elastic.co/cn/blog/building-real-time-dashboard-applications-with-apache-flink-elasticsearch-and-kibana Fabian Hueske Share Gaining actionable insights from continuously produced data in real-time is a common requirement for many business…
大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发展着. 在国外一些社区,有很多人将大数据的计算引擎分成了 4 代,当然,也有很多人不会认同.我们先姑且这么认为和讨论. 首先第一代的计算引擎,无疑就是 Had…
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz 1. 各种Connector 1.1Connector是什么鬼 Connectors是数据进出Flink的一套接口和实现,可以实现Flink与各种存储.系统的连接 注意:数据进出Flink的方式不止Connectors,还有: 1.Async I/O(类Source能力):异步访问外部数据库 2.Querya…
今天在 Apache Flink meetup ·北京站进行 Flink 1.9 重大新特性进行了讲解,两位讲师分别是 戴资力/杨克特,zhisheng 我也从看完了整个 1.9 特性解读的直播,预计 Flink 1.9 版本正式发布时间大概是 7 月底 8 月初左右正式发布,下面一起来看看直播内容: 架构改动 Table/SQL API Runtime 生态 最后 GitHub Flink 学习代码地址:https://github.com/zhisheng17/flink-learning…
1.前言 本文是在<如何计算实时热门商品>[1]一文上做的扩展,仅在功能上验证了利用Flink消费Kafka数据,把处理后的数据写入到HBase的流程,其具体性能未做调优.此外,文中并未就Flink处理逻辑做过多的分析,只因引文(若不特殊说明,文中引文皆指<如何计算实时热门商品>一文)中写的很详细了,故仅给出博主调试犯下的错.文中若有错误,欢迎大伙留言指出,谢谢! 源码在GitHub上,地址:https://github.com/L-Wg/flinkExample: 环境:Flin…
众所周知,Apache Flink(以下简称 Flink)最早诞生于欧洲,2014 年由其创始团队捐赠给 Apache 基金会.如同其他诞生之初的项目,它新鲜,它开源,它适应了快速转的世界中更重视的速度与灵活性. 大数据时代对人类的数据驾驭能力提出了新的挑战,Flink 的诞生为企业用户获得更为快速.准确的计算能力提供了前所未有的空间与潜力.作为公认的新一代大数据计算引擎,Flink 究竟以何魅力成为阿里.腾讯.滴滴.美团.字节跳动.Netflix.Lyft 等国内外知名公司建设流计算平台的首选…
8月22日,Apache Flink 1.9.0 版本正式发布,这也是阿里内部版本 Blink 合并入 Flink 后的首次版本发布.此次版本更新带来的重大功能包括批处理作业的批式恢复,以及 Table API 和 SQL 的基于 Blink 的新查询引擎(预览版).同时,这一版本还推出了 State Processor API,这是社区最迫切需求的功能之一,该 API 使用户能够用 Flink DataSet 作业灵活地读写保存点.此外,Flink 1.9 还包括一个重新设计的 WebUI 和…
官宣 | Apache Flink 1.12.0 正式发布,流批一体真正统一运行! 原创 Apache 博客 [Flink 中文社区](javascript:void(0) 翻译 | 付典 Review | 徐榜江.朱翥 Apache Flink 社区很荣幸地宣布 Flink 1.12.0 版本正式发布!近 300 位贡献者参与了 Flink 1.12.0 的开发,提交了超过 1000 多个修复或优化.这些修改极大地提高了 Flink 的可用性,并且简化(且统一)了 Flink 的整个 API…
Apache Flink 1.12.0 正式发布 Apache Flink 社区很荣幸地宣布 Flink 1.12.0 版本正式发布!近 300 位贡献者参与了 Flink 1.12.0 的开发,提交了超过 1000 多个修复或优化.这些修改极大地提高了 Flink 的可用性,并且简化(且统一)了 Flink 的整个 API 栈.其中一些比较重要的修改包括: 在 DataStream API 上添加了高效的批执行模式的支持.这是批处理和流处理实现真正统一的运行时的一个重要里程碑. 实现了基于Ku…
本文转发自Jason’s Blog,原文链接 http://www.jasongj.com/2015/01/02/Kafka深度解析 背景介绍 Kafka简介 Kafka是一种分布式的,基于发布/订阅的消息系统.主要设计目标如下: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间的访问性能 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条消息的传输 支持Kafka Server间的消息分区,及分布式消费,同时保证每个partition内的消息…
Where did we come from? With the 0.9.0-milestone1 release, Apache Flink added an API to process relational data with SQL-like expressions called the Table API. The central concept of this API is a Table, a structured data set or stream on which relat…