改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技巧.我们都知道python中有Numby和Scipy这两个库,还有前段时间写的matplot库,绘图用的,大家可以参考下,实际这个算法是看懂之前的一些算法的实现. 上面我就简单介绍下这个算法实现,首先我们先肯定一个事前准备好的矩阵,这个多是事前聚类出来的或者通过专家估计出来的值. 为了这个分类矩阵和…
机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplotlib可以认为是python…
实验设备与软件环境 硬件环境:内存ddr3 4G及以上的x86架构主机一部 系统环境:windows 软件环境:Anaconda2(64位),python3.5,jupyter 内核版本:window10.0 实验内容和原理 (1)实验内容: 使用k近邻算法改进约会网站的配对效果.海伦使用约会网址寻找适合自己的约会对象,约会网站会推荐不同的人选.她将曾经交往过的的人总结为三种类型:不喜欢的人.魅力一般的人.极具魅力的人.尽管发现了这些规律,但依然无法将约会网站提供的人归入恰当的分类.使用KNN算…
使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的kkk个点,在这kkk个点中所占比重最大的分类即为该点所在的分类.通常kkk不超过202020 kNN算法步骤: 计算数据集中的点与待分类点之间的距离 按照距离升序排序 选出距离最小的kkk个点 计算这kkk个点所在类别出现的频率(次数) 返回出现频率最高的点的类别 代码的实现: 首先导入numpy模块和operator模块,建立一个数据集 from numpy import * import operator def createD…
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于python 2.7的,但是我安装的是python 3.6.2. 所以很关键的是,你必须得有一定的python基础.这里我推荐runoob的py3教程,通俗易懂.http://www.runoob.com/python3/python3-tutorial.html 注意:python2和python3是不兼容的 p…
本系列都是参考<机器学习实战>这本书,只对学习过程一个记录,不做详细的描述! 注释:看了一段时间Ng的机器学习视频,感觉不能光看不练,现在一边练习再一边去学习理论! KNN很早就之前就看过也记录过,在此不做更多说明,这是k-means之前的记录,感觉差不多:http://www.cnblogs.com/wjy-lulu/p/7002688.html 1.简单的分类 代码: import numpy as np import operator import KNN def classify0(i…
1.学习之前你应该知道这些 几乎每个项目都会用到缓存,这是必然的.以前在学校时做的网站基本上的一个标准就是1.搞定增删改查2.页面做的不要太差3.能运行(ps真的有这种情况,答辩验收的时候几个人在讲台上演示,网站都运行不起来,混日子了o)就算完成任务.(老师可不会去问你这个页面怎么打开这么慢).但是在实际工作中大大小小的项目都会用到缓存,这也是培训学校的一个怪像,[赶进度,从不注重基础知识的积累].no bb 了,下面我们就来学习一下mvc中的缓存. 在学习如何使用缓存之前,潜意识里我们应该有这…
前面一节我们分析了Binder通信相关的两个重要类:ProcessState 和 IPCThreadState.ProcessState负责打开Binder 驱动,每个进程只有一个.而 IPCThreadState负责提供与Binder通信相关的接口,每个线程有一个.下面我们通过具体 示例MediaPlayerService来分析我们应用程序中怎么通过Binder通信的. frameworks/base/media/mediaserver/main_mediaserver.cpp int mai…
ListView是很常见的一个UI组件,在许多App中都很常用,其意思就是可滚动的列表,使用ListView必须使用Adapter(适配器),常用的适配器友谊ArrayAdapter,SimpleAdapter,BaseAdapter. ListView一些特殊的属性是: android:divider="@drawable/red"//每个列表项之间的分割线 android:entries="@drawable/books"//列表项显示的数据 布局代码示例: &…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…
一.KNN算法描述   KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近邻算法,就是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(就是上面提到的K个邻居),如果这K个实例的多数属于某个类,就将该输入实例分类到这个类中,如下图所示.                                上图中有两种不同类别的样本数据,分别用蓝色正…
Linq实战 之 DataSet操作详解  一:linq to Ado.Net 1. linq为什么要扩展ado.net,原因在于给既有代码增加福利.FCL中在ado.net上扩展了一些方法. 简单一点的说: 就是在DatTable 和 DataRow 上面做了一些扩展. 二:扩展方法一览 1. AsEnumerable 2. Field 三:扩展类一览 DataTableExtensions 扩展 => public static EnumerableRowCollection<DataRo…
php课程 1-3 web项目中php.html.js代码的执行顺序是怎样的(详解) 一.总结 一句话总结:b/s结构 总是先执行服务器端的先.js是客户端脚本 ,是最后执行的.所以肯定是php先执行. 二.PHP代码和JS代码谁先执行 php先执行.整个运行是这样的:客户端发送请求到服务器,服务器找到请求的文件(在服务器上),判断请求的文件类型.如果遇到php的代码类型 就把代码发送给php让php先翻译成html,再由服务器把html发送到浏览器上.浏览器开始解释html,遇到javascr…
原文:IdentityServer4实战 - JWT Token Issuer 详解 一.前言 本文为系列补坑之作,拖了许久决定先把坑填完. 下文演示所用代码采用的 IdentityServer4 版本为 2.3.0,由于时间推移可能以后的版本会有一些改动,请参考查看,文末附上Demo代码. 本文所诉Token如无特殊说明皆为 JWT Token. 众所周知 JWT Token 由三部分组成,第一部分 Header,包含 keyid.签名算法.Token类型:第二部分 Payload 包含 To…
Java工程师 基础+实战 完整路线图(详解版)   Java 基础 Java 是一门纯粹的面向对象的编程语言,所以除了基础语法之外,必须得弄懂它的 oop 特性:封装.继承.多态.此外还有泛型.反射的特性,很多框架的技术都依赖它,比如 Spring 核心的 Ioc 和 AOP,都用到了反射,而且 Java 自身的动态代理也是利用反射实现的.此外还有 Java 一些标准库也是非常常见,比如集合.I/O.并发,几乎在 Web 开发中无处不在,也是面试经常会被问到的,所以在自学 Java 后端之前,…
前面讲过zuul的网关实现,那为什么今天又要讲Spring Cloud Gateway呢?原因很简单.就是Spring Cloud已经放弃Netflix Zuul了.现在Spring Cloud中引用的还是Zuul 1.x版本,而这个版本是基于过滤器的,是阻塞IO,不支持长连接.Zuul 2.x版本跟1.x的架构大一样,性能也有所提升.既然Spring Cloud已经不再集成Zuul 2.x了,那么我今天也就再讲解一下Spring Cloud Gateway了. 1. API网关 API网关是一…
为什么电脑排版效果和手机排版效果不一样~ 目前只学习了python的基础语法,有些东西理解的不透彻,希望能一边看<机器学习实战>,一边加深对python的理解,所以写的内容很浅显,也许还会有一部分错误,希望得到大家的指正.在看到书上第一个KNN算法,实现简单的电影分类的时候,就遇到了很多问题,在这里把解决方法总结下来,时常翻看,加深理解.最近时间比较充裕,希望每天都能在这里总结输出,逐渐提升自己的能力!这样总有一天,我能尽情的吃牛肉干不心疼钱,嗯! 我用的是python3,<机器学习实战…
0. 写在前面 近日加入了一个机器学习的学习小组,每周按照学习计划学习一个机器学习的小专题.笔者恰好近来计划深入学习Python,刚刚熟悉了其基本的语法知识(主要是与C系语言的差别),决定以此作为对Python的进一步熟悉和应用.所以,在接下里的八周里,将每周分享一篇机器学习的心得笔记.呐,现在开始吧. 1. 什么是kNN算法 要明确什么是kNN算法,还是要先从什么是机器学习这个更加基本的问题开始谈起.以下摘录一段Wiki百科中的概念解释: 机器学习是人工智能的一个分支.人工智能的研究历史有着一…
写在开头,打算耐心啃完机器学习实战这本书,所用版本为2013年6月第1版 在P19页的实施kNN算法时,有很多地方不懂,遂仔细研究,记录如下: 字典按值进行排序 首先仔细读完kNN算法之后,了解其是用距离来进行判别 程序清单2-1看不太明白,于是把具体的inX,dataSet,labels,k带进去大致明白了意思,这里不做演示 书上用字典进行存储,然后对字典的值进行排序,这里不太清楚故去学习了一下 这些理清楚之后,首先来看如何对字典的值进行排序: dict1 = {'a': 1, 'b': 4,…
1.KNN原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中最相似数据(最近邻)的分类标签.一般来说,只选择样本数据集中前 $k$ 个最相似的数据,这就是KNN算法 $k$ 的出处, 通常 $k$ 是不大于20的整数.最后,选择 $k$ 个最相似数据中出现次数最多的分类,作为新数据的分类. 2.实验准备: Python s…
''' Created on Nov 06, 2017 kNN: k Nearest Neighbors Input: inX: vector to compare to existing dataset (1xN) dataSet: size m data set of known vectors (NxM) labels: data set labels (1xM vector) k: number of neighbors to use for comparison (should be…
1. K-近邻算法概述(k-Nearest Neighbor,KNN) K-近邻算法采用测量不同的特征值之间的距离方法进行分类.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 优点:精度高.对异常数据不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型. KNN工作原理是:存在一个样本数据集合(训练样本集),并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类…
所谓的KNN算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. 这里举一个很简单的例子来理解一下KNN算法的原理,假设有以下数据,根据微信.电话.短信联系的次数将朋友进行归类为认识.普通.好友三个类别,如下: 根据A-J的特征来确定K应该属于哪一类朋友? 那么就可以用下面的代码来进行归类: #! /usr/bin/env python # enco…
import numpy as np import re #词表到向量的转换函数 def loadDataSet(): postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love'…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习.我们都知道每一届的美国总统大选,那叫一个竞争激烈.可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大.有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归,那自然能以压倒性优势竞选成功,那么我们的k-means算法还真用不上.但是,我们应该知道2004年的总统大选中,候选人的得票数非常接近,接近到什么程度呢?如果1%的选民将手中的选票投向任何一位候选人,都直接决定了…
''' 机器学习实战——KNN约会网站优化 ''' import operator import numpy as np from numpy import * from matplotlib.font_manager import FontProperties import matplotlib.lines as mlines import matplotlib.pyplot as plt # largeDoses :极具魅力 :smallDoses :魅力一般 :didntLike:不喜欢…
1.kNN 算法 算法说明: set<X1,X2……Xn> 为已知类别数据集,预测 点Xt 的类别: (1)计算中的set中每一个点与Xt的距离 (2)按距离增序排列 (3)选择距离最小的前k个点 (4)确定前k个点所在的类别的出现频率 (5)返回频率最高的类别作为测试的结果 from numpy import * import operator def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) la…
from math import log import numpy as np import matplotlib.pyplot as plt import operator #计算给定数据集的香农熵 def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: #| currentLabel = featVec[-1] #| if currentLabel not…
机器学习实战——读书笔记 书籍奉上…