mysql语句的优化有局限性,mysql语句的优化都是围绕着索引去优化的,那么如果mysql中的索引也解决不了海量数据查询慢的状况,那么有了水平分表与垂直分表的出现(我就是记录一下自己的理解) 水平分表: 如上图所示:另外三张表表结构是一样的 只不过把数据进行分别存放在这三张表中,如果要insert 或者query 那么都需要对id进行取余 然后table名进行拼接,那么就是一张完整的table_name 但是如果我需要对name进行分表呢 或者对email呢? 那么就需要用MD5进行加密 因为…
坚信数据库的物理设计在对高级数据库的性能影响上远比其他因素重要.给大家说一下经过专家对Oracle的研究,他们解释了为什么拙劣的物理设计是数据库停机(无论是有计划的还是没计划的)背后的主要原因.但在这点上俺还是坚持DBA如果想要高性能的数据库就必须在数据库的物理设计上多思考的观点,这样才能减少响应时间使终端用户满意而不是引来骂声一片. 今天的文章是MySQL5.1的发布带来了设计超强动力数据库的强有力的武器,任何MySQL的DBA都应该尽快学习并使用它.俺觉得如果能很好滴使用这个5.1版带来的新…
表分割有两种方式: 1.水平分割:根据一列或多列数据的值把数据行放到两个独立的表中. 水平分割通常在下面的情况下使用. •表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度. •表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用. •需要把数据存放到多个介质上. 水平分割会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要union操作.在许多数据库应用中,这种复杂性会超过它带来…
一.mysql中的优化 where语句的优化 1.尽量避免在 where 子句中对字段进行表达式操作select id from uinfo_jifen where jifen/60 > 10000;优化后:Select id from uinfo_jifen where jifen>600000; 2.应尽量避免在where子句中对字段进行函数操作,这将导致mysql放弃使用索引 select uid from imid where datediff(create_time,'2011-11…
1 为什么要分库分表 物理服务机的CPU.内存.存储设备.连接数等资源有限,某个时段大量连接同时执行操作,会导致数据库在处理上遇到性能瓶颈.为了解决这个问题,行业先驱门充分发扬了分而治之的思想,对大库表进行分割, 然后实施更好的控制和管理,同时使用多台机器的CPU.内存.存储,提供更好的性能.而分治有两种实现方式:垂直拆分和水平拆分. 2 垂直拆分(Scale Up 纵向扩展) 垂直拆分分为垂直分库和垂直分表,主要按功能模块拆分,以解决各个库或者各个表之间的资源竞争.比如分为订单库.商品库.用户…
当单表数据太多时,我们可以水平划分,参考 SqlServer 分区视图实现水平分表 ,水平划分可以提高表的一些性能. 而 垂直分表 则相对很少见到和用到,因为这可能是数据库设计上的问题了.如果数据库中一张表有部分字段几乎从不不更改但经常查询,而部分字段的数据频繁更改,这种设计放到同一个表中就不合理了,相互影响太大了.在已存在改情况的表的时候,可以考虑按列拆分表,即垂直拆分. 由于垂直分表的案例比较少,最近因为存在这样的表,所以个人捣鼓了一下. 源表设计结构: -- 源表 CREATE TABLE…
当单表数据太多时.我们能够水平划分,參考 SqlServer 分区视图实现水平分表 ,水平划分能够提高表的一些性能. 而 垂直分表 则相对非常少见到和用到,由于这可能是数据库设计上的问题了.假设数据库中一张表有部分字段差点儿从不不更改但常常查询,而部分字段的数据频繁更改.这样的设计放到同一个表中就不合理了,相互影响太大了.在已存在改情况的表的时候,能够考虑按列拆分表,即垂直拆分. 由于垂直分表的案例比較少,近期由于存在这种表,所以个人捣鼓了一下. 源表设计结构: -- 源表 CREATE TAB…
一.MySQL扩展具体的实现方式 随着业务规模的不断扩大,需要选择合适的方案去应对数据规模的增长,以应对逐渐增长的访问压力和数据量. 关于数据库的扩展主要包括:业务拆分.主从复制.读写分离.数据库分库与分表等.这篇文章主要讲述数据库分库与分表 (1)业务拆分 在 大型网站应用之海量数据和高并发解决方案总结一二 一篇文章中也具体讲述了为什么要对业务进行拆分. 业务起步初始,为了加快应用上线和快速迭代,很多应用都采用集中式的架构.随着业务系统的扩大,系统变得越来越复杂,越来越难以维护,开发效率变得越…
一.疑问&目的 1.1 分表使用场景 (1)可扩展架构设计,比如一个ERP用5年不卡,到了10就卡了因为数据太多了,这个时候很多人都是备份然后清空数据,这个工作大并且麻烦,以前的数据很难在使用 (2) 数据量太多 ,例如每天都有 几十上百万的数据进入库,如果不分表后面查询将会非常缓慢 (3)   性能瓶颈 ,比如我插入超过1个亿很多索引会莫名失效,性能缓存,具体原因很难排查,有分表功能,我就能知道插入哪个表,这样我只对一个分表进行插入性能是成倍增长 1.2  我的目的 说到ORM很多会想到EF…
一.背景 在业务场景开发的过程中, 随着数据量的增加,相同表结构不同表名的分表策略是常用的方案选择之一.如下以golang做为后端业务开发,尝试修改beego的orm库做一个相同表结构不同表名的分表实现. 二.orm相同表结构不同表名的修改逻辑 三.orm分表对比 操 作 不分表代码使用 分表代码使用 写 入 o := orm.NewOrm() user := User{Name: "slene"} // insert id, err := o.Insert(&user) o…