相关: KD树+BBF算法解析 SURF原理与源代码解析 SIFT的原理已经有非常多大牛的博客上做了解析,本文重点将以Rob Hess等人用C实现的代码做解析,结合代码SIFT原理会更easy理解.一些难理解点的用了☆标注. 欢迎大家批评指正. 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47377611 SIFT(Scale-invariant feature transform)即尺度不变特征转换,提取的局部特征点具有…
转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…
Python源代码剖析笔记3-Python执行原理初探 本文简书地址:http://www.jianshu.com/p/03af86845c95 之前写了几篇源代码剖析笔记,然而慢慢觉得没有从一个宏观的角度理解python执行原理的话,从底向上分析未免太easy让人疑惑.不如先从宏观上对python执行原理有了一个基本了解,再慢慢探究细节.这样或许会好非常多. 这也是近期这么久没有更新了笔记了,一直在看源代码剖析书籍和源代码.希望能够从一个宏观层面理清python执行原理.人说读书从薄读厚,再从…
一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree/nonfree.hpp>//SIFT #include <opencv2/legacy/legacy.hpp>//BFMatch暴力匹配 #include <vector> #include<iostream> using namespace std; using…
SIFT算法是一种基于尺度空间的算法.利用SIFT提取出的特征点对旋转.尺度变化.亮度变化具有不变性,对视角变化.仿射变换.噪声也有一定的稳定性. SIFT实现特征的匹配主要包括四个步骤: 提取特征点 计算关特征点的描述子 利用描述子的相似程度对特征点进行匹配 消除误匹配点 1. 提取特征点 构建尺度空间:模拟图像的多尺度特征.经证实,唯一可能的尺度空间核是高斯函数.用L(x,y,σ)表示一幅图像的尺度空间,由可变尺度的高斯函数G(x,y,σ)和图像卷积产生,即,其中,(x,y)表示图像上的点,…
import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 = img1_gray.shape[:2] h2, w2 = img2_gray.shape[:2] vis = np.zeros((max(h1, h2), w1 + w2, 3), np.uint8) vis[:h1, :w1] = img1_gray vis[:h2, w1:w1 + w2]…
原博文出自于: http://blog.fens.me/mahout-recommend-engine/ 感谢! 从源代码剖析Mahout推荐引擎 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigto…
http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scal…
特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式来阐述特征匹配这个过程,以及在过程中遇到的一些问题. 首先我通过几张图片来指出什么是特征匹配,以及特征匹配的过程. 图像一:彩色圆圈为图像的特征点 图像二: 图像一与图像二的匹配: 概念理解:什么是特征,什么是特征描述,什么是特征匹配 假设这样的一个场景,小白和小黑都在看一个图片,但是他们想知道他们…
一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要.这篇文章我总结了视觉领域最常用的几种特征点以及特征匹配的方法. 在计算机视觉领域,兴趣点(也称关键点或特征点)的概念已经得 到了广泛的应用, 包括目标识别. 图像配准. 视觉跟踪. 三维重建 等. 这个概念的原理是, 从图像中选取某些特征点并对图像进行局部 分析,而非观察整幅图像. 只要图像中有足够…