一.BCELoss 二分类损失函数 输入维度为(n, ), 输出维度为(n, ) 如果说要预测二分类值为1的概率,则建议用该函数! 输入比如是3维,则每一个应该是在0--1区间内(随意通常配合sigmoid函数使用),举例如下: import torchimport torch.nn as nnm = nn.Sigmoid() loss = nn.BCELoss() input = torch.randn(3,requires_grad=True) target = torch.empty(3)…
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, Cin,H,W),输出尺度(N,Cout,Hout,Wout)的计算方式: 说明 stride: 控制相关系数的计算步长 dilation:…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor 参数: tensor:一个n维的torch.Tensor val:用于填满tensor的值 举例: w = torch.empty(,) nn.init.constant_(w, 0.3) 返回: tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000], […
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-…
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看出差别,先拿torch.nn.Conv2d torch.nn.Conv2d class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=…
从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 relu多种实现之间的关系 relu 函数在 pytorch 中总共有 3 次出现: torch.nn.ReLU() torch.nn.functional.relu_() torch.nn.functional.relu_() torch.relu() torch.relu_() 而这3种不同的实现其实是有固定的包装关系,由上至下是由表及里的过程. 其中最后一个实际上并不被 pytorch…
pytorch损失函数: http://blog.csdn.net/zhangxb35/article/details/72464152?utm_source=itdadao&utm_medium=referral…
适用场景:一个输入对应多个label,或输入类别间不互斥 调用函数: 1. Pytorch使用torch.nn.BCEloss 2. Tensorflow使用tf.losses.sigmoid_cross_entropy 3. Caffe使用SigmoidCrossEntropyLoss 在output和target之间构建binary cross entropy,其中i为每一个类. 以pytorch为例:Caffe,TensorFlow版本类比,输入均为相同形式的向量 m = nn.Sigmo…
一.nn.Embedding.weight初始化分布 nn.Embedding.weight随机初始化方式是标准正态分布  ,即均值$\mu=0$,方差$\sigma=1$的正态分布. 论据1——查看源代码 ## class Embedding具体实现(在此只展示部分代码) import torch from torch.nn.parameter import Parameter from .module import Module from .. import functional as F…