Euclid's Game】的更多相关文章

题目描述: Euclid's Game Time Limit: 2 Seconds      Memory Limit: 65536 KB Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of t…
Euclid求最大公约数算法 #include <stdio.h> int gcd(int x,int y){ while(x!=y){ if(x>y) x=x-y; else y=y-x; } return x; } int main(int argc, const char *argv[]) { if(3!=argc){ printf("Usage:<a,out> num1 num2\n"); return -1; } printf("%d\…
Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 3174    Accepted Submission(s): 1474 Problem Description Two players, Stan and Ollie, play, starting with two natural numbers. Stan,…
Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9033   Accepted: 3695 Description Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser o…
Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2074    Accepted Submission(s): 924 Problem Description Two players, Stan and Ollie, play, starting with two natural numbers. Stan,…
Euclid's Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 1256    Accepted Submission(s): 576 Problem Description Two players, Stan and Ollie, play, starting with two natural numbers. Stan,…
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非负整数a和任意正整数b,gcd(a,b)=gcd(b,a%b). ============================================================= gcd(a,b)=gcd(b, a+kb) a,b,k为任意整数 即gcd(a,b)=gcd(b, a mod…
求两个数 p 和 q 的最大公约数(greatest common divisor,gcd),利用性质 如果 p > q, p 和 q 的最大公约数 = q 和 (p % q)的最大公约数. 证明:见 http://blog.csdn.net/niushuai666/article/details/7278027 public class Euclid{ // recursive inplementation public static int gcd(int p, int q){ if(q =…
1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ∀x(x|0) and ∀x(0| x). 1个引理: 假设 k|a, k|b,则对任意的 x,y  ∈ Z, k|(xa+yb)均成立. 证明: k|a => a=pk, k|b => b==qk (其中 p,q ∈ Z) 于是有 xa+yb=xpk+yqk=(xp+yq)k 因为 k|(xp…
Euclid 规则:如果x和y都是正整数,而且x>=y,那么gcd(x,y)=gcd(x mod y, y) 假设x和y的gcd为a,那么必然有 x=a*n1 y=a*n2(gcd(n1,n2)=1) 那么我们求 x mod y =>a*n1 mod a*n2 令x mod y=m,那么必然满足 x=n3*y+m =>a*n1=n3*a*n2+m =>m=a*(n1-n2*n3) 那么gcd(x mod y,y)就变成了gcd(a*(n1-n2*n3), a*n2), 如果gcd(…