Linux内核笔记:内存管理】的更多相关文章

内核版本:linux-2.6.11 Linux在加载一个可执行程序的时候做了种种复杂的工作,内存分配是其中非常重要的一环,作为一个linux程序员必然会想要知道这个过程到底是怎么样的,内核源码会告诉你这一切. 线性区 一个可执行程序,是经过编译器处理后的遵守一定规则的数据.符号表和指令序列的组合,当linux加载一个可执行程序的时候,会为其创建一个新的进程,其对应的进程描述符task_struct中会保存许多资源的描述符,其中的mm_struct就是这个进程的内存描述符,用来管理该进程拥有的所有…
内核版本:linux-2.6.11 内存区和内存对象 伙伴系统是linux用于满足对不同大小块内存分配和释放请求的解决方案,它为slab分配器提供页框分配请求的实现. 如果我们需要请求具有连续物理地址和任意长度的内存单元序列时,即不定大小的内存区时,则需要在伙伴系统之上提供一层更细粒度的管理方案. Linux在分配内存的时候,会将这部分内存初始化成一定的类型,即内存对象,例如信号.进程描述符.文件描述符等等,在释放的时候,会进行析构. 然而进行初始化和析构占用的时间已然超出了分配这部分内存的时间…
内核版本:linux-2.6.11 伙伴系统 伙伴系统是linux用于满足对不同大小块物理内存分配和释放请求的解决方案. 内存管理区 linux将物理内存分成三个内存管理区,分别为ZONE_DMA ZONE_NORMAL ZONE_HIGHMEM,并使用三个管理区描述符管理这三个ZONE. 管理区描述符里,有一个元素数为11的free_area数组,分别对应1.2.4.8.16.....不同块的大小,其中的每个元素的类型都是一个名为free_area的结构体,代码位置mm/mmzone.h st…
昨天分析的进程的代码让自己还在头昏目眩,脑子中这几天都是关于Linux内核的,对于自己出现的一些问题我会继续改正,希望和大家好好分享,共同进步.今天将会讲诉Linux如何追踪和管理用户空间进程的可用内存和内核的可用内存,还会讲到内核对内存分类的方式以及如何决定分配和释放内存,内存管理是应用程序通过软硬件协助来访问内存的一种方式,这里我们主要是介绍操作系统正常运行对内存的管理.插个话题,刚才和姐姐聊天,她快结婚了,说起了自己的初恋,可能是一句很搞笑的话,防火防盗防初恋,,嘎嘎,这个好像是的吧,尽管…
Linux内核之内存管理 Linux利用的是分段+分页单元把逻辑地址转换为物理地址; RAM的某些部分永久地分配给内核, 并用来存放内核代码以及静态内核数据结构; RAM的其余部分称动态内存(dynamic memory); 整个系统的性能取决于如何有效的管理动态内存; 尽力优化对动态内存的使用, 尽量做到需要时使用, 不需要时释放; 内核如何给自己分配动态内存: 页框管理和内存区管理对连续内存去处理的两种不同的技术; 非连续区的管理是处理不连续内存去的一种技术; 内存管理必须知道的几个主题技术…
linux虚拟内存管理功能 ? 大地址空间:? 进程保护:? 内存映射:? 公平的物理内存分配:? 共享虚拟内存.实现结构剖析   (1)内存映射模块(mmap):负责把磁盘文件的逻辑地址映射到虚拟地址,以及把虚拟地址映射到物理地址 (2)交换模块(swap)负责控制内存内容的换入与换出,淘汰最近没访问的页,保留最近访问的页. (3)core(核心内存管理模块):负责内存管理功能. (4)结构特定模块:实现虚拟内存的物理基础   内核空间和用户空间 Linux简化了分段机制,使得虚拟地址跟线性地…
内核如果给自己分配动态内存 动态内存:RAM的某些部分被永久打分配给内核,用来存放内核代码以及静态内核数据结构:剩余的部分被称为动态内存 连续物理内存区管理: 页框管理:1.页大小的选择,通常情况下主存和磁盘之间传输小数据块更高效,所以Linux选择4kb点页框2.页描述符:page结构,32字节:存放在mem_map数组中:占整个RAM的大概1%空间,即每页框(4kB)一个描述符(32B),1/128.3.非一致内存访问(NUMA):CPU对不同内存单元的访问时间不相同:因为CPU和内存的相对…
1.1什么是内存管理 内存管理是对计算机内存进行分配和使用的技术.内存管理主要存在于多任务的操作系统中,因为内存资源极其有限.须要在不同的任务之间共享内存,内存管理的存在就是要高效.高速的非配内存,并在适当的时候回收和释放内存.以保各个任务正常的运行.最常见的内存管理机制有:段式内存管理和页式内存管理. 1.2内存中的地址 早期的16位计算中.寄存器的位宽仅仅有16位.为了能訪问到1M Bit的内存空间,CPU就採用了分段的方式来管理内存,将1M的内存分为若干个逻辑段,每一个逻辑段的起始地址必须…
前面几篇介绍了进程的一些知识,从这篇开始介绍内存.文件.IO等知识,发现更不好写哈哈.但还是有必要记录下自己的所学所思.供后续翻阅,同时写作也是一个巩固的过程. 这些知识以前有文档涉及过,但是角度不同,这个系列站的角度更底层,基本都是从Linux内核出发,会更深入.所以当你都读完,然后再次审视这些功能的实现和设计时,我相信你会有种豁然开朗的感觉. 1.页 内核把物理页作为内存管理的基本单元. 尽管处理器的最小处理单位是字(或者字节),但是MMU(内存管理单元,管理内存并把虚拟地址转换为物理地址的…
内核版本:linux-2.6.11 在Linux中,有多种执行体(指令流.执行单位),它们是CPU调度和分配资源的基本单位,它们是内核态可见的,即内核态下,每一种执行体都有对应的唯一数据结构task_struct来存储它的执行上下文. 它们分别是进程.轻量级进程.内核线程,创建一个执行体的方法是基于调用clone()函数并指定flags参数来完成. 通过指定不同的flags参数,可以规定新建的执行体的共享资源量.执行状态等,也正是于此来区分不同的执行体并控制不同执行体的运行开销.切换开销. ta…
本文主要解说缺页处理程序,凝视足够具体,不再解释. //以下函数将一页内存页面映射到指定线性地址处,它返回页面的物理地址 //把一物理内存页面映射到线性地址空间指定处或者说把线性地址空间指定地址address处的页面映射到主内存区页面page上.主要工作是在相关也文件夹项和页表项中设置指定页面的信息.在处理缺页异常函数do_no_page中会调用这个函数. 參数:address--线性地址:page--是分配的主内存区中某一页面指针 static unsigned long put_page(u…
linux内核中内存相关的操作函数 1.kmalloc()/kfree() static __always_inline void *kmalloc(size_t size, gfp_t flags) 内核空间申请指定大小的内存区域,返回内核空间虚拟地址.在函数实现中,如果申请的内存空间较大的话,会从buddy系统申请若干内存页面,如果申请的内存空间大小较小的话,会从slab系统中申请内存空间.有关buddy和slab,请参见<linux内核之内存管理.doc> gfp_t flags 的选项…
原文:linux内核笔记之高端内存映射 在32位的系统上,内核使用第3GB~第4GB的线性地址空间,共1GB大小.内核将其中的前896MB与物理内存的0~896MB进行直接映射,即线性映射,将剩余的128M线性地址空间作为访问高于896M的内存的一个窗口. 引入高端内存映射这样一个概念的主要原因就是我们所安装的内存大于1G时,内核的1G线性地址空间无法建立一个完全的直接映射来触及整个物理内存空间,而对于80x86开启PAE的情况下,允许的最大物理内存可达到64G,因此内核将自己的最后128M的线…
原文:linux内核笔记之进程地址空间 进程的地址空间由允许进程使用的全部线性地址组成,在32位系统中为0~3GB,每个进程看到的线性地址集合是不同的. 内核通过线性区的资源(数据结构)来表示线性地址区间,线性区是由起始线性地址,长度和一些访问权限来描述的.线性区的大小为页框的整数倍,起始地址为4096的整数倍. 下图展示了x86 Linux 进程的地址空间组织结构: 正文段 .text ,这是CPU执行的机器指令部分.通常正文段是共享的,而且是只读的,以防止程序修改其自身的指令. 数据段 .d…
kmap函数:    把某块高端内存映射到页表,然后返回给用户一个填好vitual字段的page结构    建立永久地址映射,不是简单的返回virtual字段的pageioremap:    驱动程序无法直接访问io物理地址,所以ioremap是为了使将其映射到虚拟内存,然后直接像访问内存那样访问io    当开启了CONFIG_HIGHMEM时,能操作大于896M的RAM    所以当物理内存大于896M且内核开启了CONFIG_HIGHMEM,ioremap传入的phys_addr参数可以为…
Linux内核中内存cache的实现 转自:http://blog.chinaunix.net/uid-127037-id-2919545.html   本文档的Copyleft归yfydz所有,使用GPL发布,可以自由拷贝,转载,转载时请保持文档的完整性, 严禁用于任何商业用途.msn: yfydz_no1@hotmail.com来源:http://yfydz.cublog.cn 1. 前言 kmem_cache是Linux内核提供的快速内存缓冲接口,这些内存块要求是大小相同的,因为分配出的内…
转自:http://blog.csdn.net/Baiduluckyboy/article/details/9667933 内存管理,不用多说,言简意赅.在内核里分配内存还真不是件容易的事情,根本上是因为内核不能想用户空间那样奢侈的使用内存. 先来说说内存管理.内核把物理页作为内存管理的基本单位.尽管处理器的最小可寻址单位通常是字,但是,内存管理单元MMU通常以页为单位进行处理.因此,从虚拟内存的交代来看,页就是最小单位.内核用struct  page(linux/mm.h)结构表示系统中的每个…
转自:http://www.cnblogs.com/likeyiyy/p/3837272.html 我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开启分页之后,任何寻址都要经过mmu的转换,也就是一个二级查表的过程(386) 难道内核很特殊,当mmu看到某个逻辑地址是内核传来的之后,就不查表了,直接减去0xC0000000,然后就传递给内存控制器…
我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开启分页之后,任何寻址都要经过mmu的转换,也就是一个二级查表的过程(386) 难道内核很特殊,当mmu看到某个逻辑地址是内核传来的之后,就不查表了,直接减去0xC0000000,然后就传递给内存控制器了??? 我发现网上也有人和我问了同样的问题,看这个问题 这句话太让人费解了,让人费解到以至于要怀疑…
内存管理 Linux内核使用段页式内存管理方式. 内存池 物理页:物理空闲内存被划分为固定大小(4k)的页 内存池:所有空闲物理页组成内存池,以页为单位进行分配回收.并通过位图记录了每个物理页是否空闲,位图下标对应物理页号. 分页内存管理 虚拟页:进程虚地址空间被划分为固定大小(4k)的页 分页内存管理:通过页目录和页表维护进程虚拟页号到物理页号的映射.设置好页目录.页表之后,虚拟地址到物理地址之间的转换通过内存管理单元(MMU)自动完成转换.若访问的虚拟页没有实际分配物理页,则放生缺页中断,内…
转自知乎专栏:https://zhuanlan.zhihu.com/p/51855842?utm_source=wechat_session&utm_medium=social&utm_oi=42141350887424 一.linux内存管理机制 Linux中可以借助brk或mmap函数从用户空间中申请连续内存. Linux寻址空间(32位),用户空间为3GB,内核空间为1GB 通过调用brk(0)可以获取指向用户空间某一地址的指针,随后调用brk(len)可以在原指针地址的基础上移动该…
转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-learning-memory-management/ 接着之前的 Linux kernel 学习步伐,来到极其重要的内存管理部分,继续本文内容,需要先了解内存寻址的基础知识,见之前的 [内存寻址] 博文. 1.内存页及内存区域: 正如…
转自:https://zohead.com/archives/linux-kernel-learning-memory-management/ 本文同步自(如浏览不正常请点击跳转):https://zohead.com/archives/linux-kernel-learning-memory-management/ 接着之前的 Linux kernel 学习步伐,来到极其重要的内存管理部分,继续本文内容,需要先了解内存寻址的基础知识,见之前的 [内存寻址] 博文. 1.内存页及内存区域: 正如…
       MMU具有物理地址和虚拟地址转换,内存访问权限保护等功能.这使得Linux操作系统能单独为每个用户进程分配独立的内存空间并且保证用户空间不能访问内核空间的地址,为操作系统虚拟内存管理模块提供硬件基础. Linux内存管理        在Linux操作系统中,进程的4G空间被分成两个部分----用户空间和内核空间.用户空间一般为0~3GB(即PAGE_OFFSET,在X86系统中等于0xC0000000),而剩余的3GB~4GB为内核空间.用户进程在通常情况下只能访问用户空间的虚拟…
初级内存管理单元 关于内存的分页 以往的物理页是按照4KB进行分配和管理的, 而在Linux之后流行的就是2MB大小的物理页的分配和管理, 整个物理内存管理单元也是2MB物理页管理的 先获取基本的物理地址空间信息 在bootloader程序中, 已经调用了BIOS的int 15h中断将物理内存地址的结构体放置到了1MB之下的物理地址0x7e00处, 我们需要将其提取出来 每一条物理空间信息BIOS加载到内存时20B, 因此我们要获取该数据, 也需要定义一个结构体也占用20B的物理内存大小, 获取…
五.调度器的实现 调度器的任务是在程序之间共享CPU时间,创造并行执行的错觉.该任务可分为调度策略和上下文切换两个不同部分. 1.概观 暂时不考虑实时进程,只考虑CFS调度器.经典的调度器对系统中的进程分别计算时间片,使进程运行直至时间片用尽,所有进程的所有时间片用完时,需要重新计算.相比之下,CFS只考虑进程等待时间,即进程在就绪队列(run_queue)中已等待的时间,对CPU时间需求最严格的进程被调度执行.每次调度器会挑选具有最高等待时间的进程提供CPU,如此进程的不公平等待不会被积累,而…
如果系统只有一个处理器,那么给定时刻只有一个程序可以运行.在多处理器系统中,真正并行运行的进程数目取决于物理CPU的数目.内核和处理器建立了多任务的错觉,是通过以很短的间隔在系统运行的应用程序之间不停切换做到的.由此,以下两个问题必须由内核解决:除非明确要求,否则应用程序不能彼此干扰:CPU时间必须在各种应用程序之间尽可能公平共享(一些程序可能比其他程序更重要).本篇博文主要涉及内核共享CPU时间的方法以及如何在进程之间切换(内核为各进程分配时间,保证切换之后从上次撤销其资源时执行环境完全相同)…
前一段时间看了<深入理解Linux内核>对其中的内存管理部分花了不少时间,但是还是有很多问题不是很清楚,最近又花了一些时间复习了一下,在这里记录下自己的理解和对Linux中内存管理的一些看法和认识. 我比较喜欢搞清楚一个技术本身的发展历程,简而言之就是这个技术是怎么发展而来的,在这 个技术之前存在哪些技术,这些技术有哪些特点,为什么会被目前的技术所取代,而目前的技术又解决了之前的技术所存在的哪些问题.弄清楚了这些,我们才能比 较清晰的把握某一项技术.有些资料在介绍某个概念的时候直接就介绍这个概…
正如上一篇我们提到过,进程是Linux系统中仅次于文件的基本抽象概念.正在运行的进程不仅仅是二进制代码,而是数据.资源.状态和虚拟的计算机组成.我们今天主要介绍进程的概念,组成,运行状态和生命周期等. 1.进程的概念 进程就是处于执行器的程序(目标代码放在某种存储介质上). 但进程并不仅仅局限于一个可执行程序代码,通常还要包含其他资源,比如: 打开的文件,挂起的信号,内核内部数据,处理器状态,一个或多个具有内存映射的内存地址空间,一个或多个可执行线程,存放全局变量的数据段等. 内核需要有效而又透…
内核刚开始启动的时候如果一步到位写一个很完善的内存管理系统是相当麻烦的.所以linux先建立了一个非常简单的临时内存管理系统bootmem,有了这个bootmem就可以做简单的内存分配/释放操作,在bootmem的基础上再做一个完善的内存管理系统就比较简单了.bootmem的本质就是位图,一个bit代表一个页框(page frame),页框分配出去就把相对应的bit置位,页框回收就把相应的bit复位.linux内核直接管理的内存是1G,所以这个位图需要2^32/4096/8=128k字节,在我另…