转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书<啤酒与尿布>,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理.我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念: TID Items T1 {牛奶,面包…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥ 而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐 这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表 而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的…
两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count(AUB)/count(A) 关联规则挖掘的基本两个步骤: 1.找出所有的频繁项集 2.由频繁项集产生强关联规则 由于整个数据库十分庞大,所以对第一步来说,若使用穷举法,搜索空间将是2d,d是项的个数.所以优化算法主要需要优化第一步.而频繁项集里的项的数目远小于数据库数据的数目,所以,在第二步中,我…
之前介绍的apriori算法中因为存在许多的缺陷,例如进行大量的全表扫描和计算量巨大的自然连接,所以现在几乎已经不再使用 在mahout的算法库中使用的是PFP算法,该算法是FPGrowth算法的分布式运行方式,其内部的算法结构和FPGrowth算法相差并不是十分巨大 所以这里首先介绍在单机内存中运行的FPGrowth算法 还是使用apriori算法的购物车数据作为例子,如下图所示: TID为购物车项的编号,i1-i5为商品的编号 FPGrowth算法的基本思想是,首先扫描整个购物车数据表,计算…
在关联规则挖掘领域最经典的算法法是Apriori,其致命的缺点是需要多次扫描事务数据库.于是人们提出了各种裁剪(prune)数据集的方法以减少I/O开支 支持度和置信度 严格地说Apriori和FP-Tree都是寻找频繁项集的算法,频繁项集就是所谓的“支持度”比较高的项集,下面解释一下支持度和置信度的概念. 设事务数据库为: A E F G A F G A B E F G E F G 则{A,F,G}的支持度数为3,支持度为3/4. {F,G}的支持度数为4,支持度为4/4. {A}的支持度数为…
前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行管理规则挖掘. weka数据集格式arff arff标准数据集简介 weka的数据文件后缀为arff(Attribute-Relation File Format,即属性关系文件格式),arff文件分为注释.关系名.属性名.数据域几大部分,注释用百分号开头%,关系名用@relation申明,属性用@…
上一篇介绍了用开源数据挖掘软件weka做关联规则挖掘,weka方便实用,但不能处理大数据集,因为内存放不下,给它再多的时间也是无用,因此需要进行分布式计算,mahout是一个基于hadoop的分布式数据挖掘开源项目(mahout本来是指一个骑在大象上的人).掌握了关联规则的基本算法和使用,加上分布式关联规则挖掘后,就可以处理基本的关联规则挖掘工作了,实践中只需要把握业务,理解数据便可游刃有余. 安装mahout 骑在大象上的侠士必然需要一头雄纠纠的大象,不过本文不解绍大象hadoop,所以我假定…
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法. 一.关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙.那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知…
@(hadoop)[Spark, MLlib, 数据挖掘, 关联规则, 算法] [TOC] 〇.简介 经典的关联规则挖掘算法包括Apriori算法和FP-growth算法.Apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集:而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率.但是apriori的算法扩展性较好,可以用于并行计算等领域. 关联规则的目的就是在一个数据集中找出项与项之间的关系,适用于在大数量的项…
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力.今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多. FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高.我们还是以上一篇中…
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中,比方超市购物时,顾客购买记录经常隐含着非常多关联规则.比方购买圆珠笔的顾客中有65%也购买了笔记本.利用这些规则.商场人员能够非常好的规划商品摆放问题: 为叙述方便.设R= { I1,I2 ......Im} 是一组物品集…
一.背景介绍 关联规则( Association rule)概念最初由Agrawal提出,是数据挖掘的一个重要研究领域, 其目的是发现数据集中有用的频繁模式. 静态关联规则挖掘,是在固定数据集和支持度下,发现数据集中的频繁项集,如 Apriori.FP-Growth.Ecalt等.现实问题中,多数时候,支持度和数据集是会发生变化的,Cheung提出了FUP (Fast UPdate)算法,主要针对数据集增大的情况,FUP算法是第一个增量关联规则挖掘算法. 二.相关定义 数据集DB = {T1,T…
Hadoop 系列(一)基本概念 一.Hadoop 简介 Hadoop 是一个由 Apache 基金会所开发的分布式系统基础架构,它可以使用户在不了解分布式底层细节的情況下开发分布式程序,充分利用集群的威力进行高速运算和存储. 从其定义就可以发现,它解決了两大问题:大数据存储.大数据分析.也就是 Hadoop 的两大核心:HDFS 和 MapReduce. HDFS(Hadoop Distributed File System)是可扩展.容错.高性能的分布式文件系统,异步复制,一次写入多次读取,…
前言: 众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题.今天要学习的是经典的关联规则挖掘算法--Apriori算法 一.算法的基本原理 由k项频繁集去导出k+1项频繁集. 二.算法流程 1.扫描事务数据库,找出1项集,并根据最小支持度计数,剪枝得出频繁1项集.k=1. 2.由频繁k项集进行连接步操作,形成候选的k+1项集,并扫描数据库,得出每一项的支持度计数,并根据最小支持度计数,剪枝得到频繁k+1项集. 迭代的进行第2步直到频繁k项集是空的. 3.由频繁项集构造关联规…
数据挖掘进阶之序列模式挖掘GSP算法 绪 继续数据挖掘方面算法的讲解,前面讲解了数据挖掘中关联规则算法FP-Growth的实现.此篇博文主要讲解基于有趣性度量标准的GSP序列模式挖掘算法.有关论文后期进行补充.实现思路与前面优化的FP-Growth算法一致,首先实现简单的GSP算法,通过认真阅读源码,在理解的基础之上进行优化.优化后的算法将在性能方面与原算法进行对比,以此突出此算法的优良性能.下面进行简要介绍: 原理介绍 GSP算法是一种非常有效的序列模式挖掘算法,该算法使用一种称作为逐层搜索的…
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关于这个算法有一个非常有名的故事:"尿布和啤酒".故事是这样的:美国的妇女们经常会嘱咐她们的丈夫下班后为孩子买尿布,而丈夫在买完尿布后又要顺 手买回自己爱喝的啤酒,因此啤酒和尿布在一起被购买的机会很多.这个举措使尿布和啤酒的销量双双增加,并一直为众商家所津津乐道. 关联规则应用: 1. Apriori算法应用广泛,可用于消费市场价格分析,猜测顾客的消费习惯,比如较…
Storm 系列(一)基本概念 Apache Storm(http://storm.apache.org/)是由 Twitter 开源的分布式实时计算系统. Storm 可以非常容易并且可靠地处理无限的数据流.对比 Hadoop 的批处理, Storm 是一个实时的.分布式的.具备高容错的计算系统. Storm 的使用场景非常广泛,比如实时分析.在线机器学习.分布式 RPC.ETL 等.Storm 非常高效,在一个多节点集群上每秒钟可以轻松处理上百万条的消息. Storm 还具有良好的可扩展性和…
已迁移到我新博客,阅读体验更佳apriori && fpgrowth:频繁模式与关联规则挖掘 详细代码我放在github上:click me 一.实验说明 1.1 任务描述 1.2 数据集说明 GroceryStore数据集 This data set contains transaction records of a grocery store in a month. Each line is a transaction, where the purchased items line i…
一.利用R进行关联规则挖掘 数据结构如下: (共9个itemsets,5个items) 首先读入数据: demodata = read.transactions("C:\\Documents and Settings\\Administrator\\桌面\\DemoData.csv", rm.duplicates= TRUE, format="basket",sep=",",cols =c(1)) 查看数据: inspect(demodata)…
 OSINT系列:威胁信息挖掘ThreatMiner   ThreatMiner.org是一个非营利性组织.它收集各种开放的网络信息和安全信息,然后进行整理,供安全人员检索.它可以提供六大类.十八小类的信息查询,如域名.IP.文件哈希值等.根据搜索内容,ThreatMiner会给出关联的威胁信息,并给出详细报告.…
Zookeeper 系列(一)基本概念 https://www.cnblogs.com/wuxl360/p/5817471.html 一.分布式协调技术 在给大家介绍 ZooKeeper 之前先来给大家介绍一种技术--分布式协调技术.那么什么是分布式协调技术?那么我来告诉大家,其实 分布式协调技术主要用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种临界资源,防止造成"脏数据"的后果. 这时,有人可能会说这个简单,写一个调度算法就轻松解决了.说这句话的人,可能对分布式…
Hbase 系列(一)基本概念 HBase 是 Apache 旗下一个高可靠性.高性能.面向列.可伸缩的分布式存储系统.利用 HBase 技术可在廉价 PC 服务器上搭建起大规模的存储化集群.使用 HBase 可以对数十亿级别的大数据进行实时性的高性能读写,在满足高性能的同时还保证了数据存取的原子性. 一.HBase 基本概念 大数据具有以下特征:volume(体量大).variety(样式多).velocity(速度快).valueless(价值密度低) Hbase(Hadoop Databa…
Apriori算法的一个主要瓶颈在于,为了获得较长的频繁模式,需要生成大量的候选短频繁模式.FP-Growth算法是针对这个瓶颈提出来的全新的一种算法模式.目前,在数据挖掘领域,Apriori和FP-Growth算法的引用次数均位列三甲. FP的全称是Frequent Pattern,在算法中使用了一种称为频繁模式树(Frequent Pattern Tree)的数据结构.FP-tree是一种特殊的前缀树,由频繁项头表和项前缀树构成.所谓前缀树,是一种存储候选项集的数据结构,树的分支用项名标识,…
D-Link系列路由器漏洞挖掘入门 前言 前几天去上海参加了geekpwn,看着大神们一个个破解成功各种硬件,我只能在下面喊 6666,特别羡慕那些大神们.所以回来就决定好好研究一下路由器,争取跟上大神们的步伐.看网上公开的D-Link系列的漏洞也不少,那就从D-Link路由器漏洞开始学习. 准备工作 既然要挖路由器漏洞,首先要搞到路由器的固件. D-Link路由器固件下载地址: ftp://ftp2.dlink.com/PRODUCTS/ 下载完固件发现是个压缩包,解压之后里面还是有一个bin…
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FICO 基本概念   前言部分 大家可以关注我的公众号,公众号里的排版更好,阅读更舒适. 正文部分 SAP FICO 基本概念的认识是学习SAP的重要环节.每一个SAP从业者都对这些概念不陌生,理解透了这些概念,对SAP的业务体系构架才能有明确地认识.1.集团(client)的概念:是SAP中的最高等级:每一个集团建立主…
目录 数据挖掘入门系列教程(四点五)之Apriori算法 频繁(项集)数据的评判标准 Apriori 算法流程 结尾 数据挖掘入门系列教程(四点五)之Apriori算法 Apriori(先验)算法关联规则学习的经典算法之一,用来寻找出数据集中频繁出现的数据集合.如果看过以前的博客,是不是想到了这个跟数据挖掘入门系列教程(一)之亲和性分析这篇博客很相似?Yes,的确很相似,只不过在这篇博客中,我们会更加深入的分析如何寻找可靠有效的亲和性.并在下一篇博客中使用Apriori算法去分析电影中的亲和性.…
关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书<啤酒与尿布>,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理.我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念: TID Items T1 {牛奶,面包} T2 {面包,尿布,啤酒,鸡蛋} T3 {牛奶,尿布,啤酒,可乐} T4 {面包,牛奶,尿布,啤酒} T5 {面包,…