luogu P3620 [APIO/CTSC 2007]数据备份】的更多相关文章

luogu 首先如果一条线不是了连接的相邻两个位置一定不优,把它拆成若干连接相邻位置的线.所以现在问题是有\(n\)个物品,选\(k\)个,要求选的位置不能相邻,求最小总和 如果没有选的位置不能相邻这个限制,那就每次选最小的.现在仍然考虑每次选最小的,但是会有情况是这一次取的位置不在最优方案中,那么如果是这种情况,那么一定是要把不选这个东西,选旁边两个东西.考虑保留这个决策的选择,每选一个数\(x\),就把它旁边两个数\(y,z\)和\(x\)合并成\(y+z-x\).然后所有数可以堆维护,前驱…
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼…
P3620 [APIO/CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼…
洛谷P1484 种树&洛谷P3620 [APIO/CTSC 2007]数据备份 题解(堆+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1329957 题目链接地址: 洛谷P1484 种树 洛谷P3620 [APIO/CTSC 2007]数据备份(各大oj多倍经验) 照例吐槽 两道基本一模一样的题,只是第二道要差分顺便思维稍微向这边转化一下... 我觉得这两个题思维很不错啊!很\(Noip\ T2\)的样子... 话不多说将题解 贪心+堆优化 肯…
题目传送门 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份.任一个…
题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份.任一个办公楼都属于…
题目 贪心+堆. 一般贪心题用到堆的时候都会存在一种反悔操作,因此这个题也不例外. 首先电缆一定是连接两个相邻的点的,这很好证明,其次一个点只能被一条电缆连接,所以我们通过选这个电缆,不选相邻电缆和选相邻电缆,不选这个电缆之间选择,然后添加反悔操作. 链表的存在是为了方便删除线段.用l,r分别表示该电缆链接之后左右两边第一个还可以反悔的电缆 #include <bits/stdc++.h> #include <queue> #define N 1001001 #define int…
正解:贪心 解题报告: 传送门$QwQ$ $umm$感觉这种问题还蛮经典的,,,就选了某个就不能选另一个这样儿,就可以用堆模拟反悔操作 举个$eg$,如果提出了$a_i$,那就$a_{i-1}$和$a_{i+1}$都不能选了,所以如果选了$a_i$之后想反悔选$a_{i-1}$和$a_{i+1}$就相当于只能另外获得$a_{i+1}+a_{i-1}-a_{i}$的收益了.所以每次取出堆顶$a_{i}$之后,就把$a_{i-1}$和$a_{i+1}$删了,然后插入$a_{i-1}+a_{i+1}-…
你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份.然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份.任一个办公楼都属于唯一的配对组(…
题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份.任一个办公楼都属于…
你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计 2K 个办公楼)安排备份.任一个办公楼都属于唯一的配对…
直接贪心(每次选最小)的话显然不对...样例都过不了... 选两个办公楼的时候,显然不能跨越另一个楼,这样不优... 于是 先把原数列处理成n-1个的数(每一个办公楼和上一个的距离),存在a[]中 题目就是 要求选出K个不相邻的数,使得选出的数的和最小 依然考虑贪心,每次选最小的 但是若a[]是2 1 2 6,要选K=2个,先选了1,然后会发现两个2都没法选,只好选6,这样就尴尬了... 1选了就选了吧,我们考虑补救措施... 就是选1的时候,在堆里删掉两个2,然后在堆中插入2+2-1 相当于…
题面 用双向链表把相邻两项的差串起来,用大根堆维护价值,每次贪心取最大的$x$.取完之后打标记删掉$pre[x]$和$nxt[x]$,之后用$val[pre[x]]+val[nxt[x]]-val[x]$替换这个$x$塞进堆里去,注意边界要连上一个极值 #include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; struct a{l…
嘟嘟嘟 这竟然是一道贪心题,然而我在不看题解之前一直以为是dp. 首先最优的配对一定是相邻两个建筑物配对,所以我们求出差分数组,就变成了在n - 1个数中选出不相邻的k个数,使这k个数的和最小. 贪心是在回事呢?首先把所有点放在一个小根堆中,然后如果取出一个点ai,就把ai-1 + ai+1 - ai放到小根堆中,这样如果以后选了ai-1 + ai+1 - ai这个数,就把前面选的ai抵消了,所以这两次操作就相当于选了ai-1和ai+1这两个数. 每选一次就合并了两个数,那么进行k次就选了k个数…
[A/C 2007] 数据备份(网络流,堆) 给你N各点的位置和K条链,需要用这些链把2K个点连起来,使得链的总长最短.可以随意选择要链的点.n=100000. 这道题居然可以用堆-- 首先,不能把区间一股脑加进去,因为有点可能会被重复连接.处理方法是这样的:若选择了第i个区间,那就把i,区间i-1和区间i+1都删除了,然后加入一个新区间,和左右区间相连接,并且将当前区间的值改为\(len[i-1]+len[i+1]-len[i]\).这样如果再选这个区间,就相当于把区间i撤消了. 具体证明嘛,…
题目描述 你在一家IT公司为大型写字楼或办公楼的计算机数据做备份. 然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上,你决定给这些办公楼配对(两个一组). 每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高. 当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(总计2K个办公楼)安排备份. 任意一个办公楼都属于唯一的配对组(换句…
\(\mathcal{Description}\)   Link.   给定升序序列 \(\{x_n\}\) 以及整数 \(k\),在 \(\{x_n\}\) 中选出恰 \(k\) 对 \((x_i,x_j)\),使得不存在某个值出现次数多于一次,并最小化 \(\sum|x_i-x_j|\). \(\mathcal{Solution}\)   告诉我,你有一个错误的贪心 owo!   显然 \((x_i,x_j)\) 是相邻的两个数.令 \(a_i=x_{i+1}-x_i\),问题转化为选 \(…
[APIO / CTSC 2007]数据备份 题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份. 然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组). 每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或…
https://www.lydsy.com/JudgeOnline/problem.php?id=1150 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣. 已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份. 然而,网络电缆的费用很高.当地电信公司仅能为你提供 K…
053:数据库高级管理: 目录 第一部分:数据库备份与恢复... 4 第一章:备份恢复概述... 4 1.1 备份的意义: 4 1.2 数据库故障的类型:... 4 1.3 制定你的备份和恢复的计划... 4 1.4 备份恢复分类... 5 1.5 备份恢复方式... 5 1.6 完全恢复与不完全恢复... 5 1.7 归档与非归档... 6 第二章:手工备份与恢复... 6 2.1 手工备份:... 6 2.2 手工备份和恢复的命令... 6 2.3 备份前应对数据库进行检查: 7 2.4 手…
最近在做一个新的项目,从RDS备份到OSS,进行数据备份以及后续的还原.这边对阿里云的OSS数据上传接口进行说明,先做下笔记先简单介绍下OSS: ①Object 在OSS中,用户操作的基本数据单元是Object.单个Object最大允许存储5TB的数据.Object包含key.meta和data.其中,key是Object的名字:meta是用户对该object的描述,由一系列name-value对组成:data是Object的数据. 其中Object命名规范:使用UTF-8编码:长度必须在1-1…
近来项目的业务量开始大了,感觉如果数据不周期性地备份一下,很可能会出现问题,虽然我每天都有阿里云的自动快照,上网找了一下方法,找到两种相对简单而又适合中小项目或者中小公司的数据备份策略,以下都是数据库数据的完全备份. 一.cp命令备份mysql数据 此方法简单粗暴,直接复制mysql下的数据,也印证了linux下的万物皆是文件的原则,管你是啥,直接复制过来,出问题直接cp过去就好了,数据库的数据是存储在mysql目录下的data,里面有对应的数据库名字的文件夹,比如说我有个test数据库,那么在…
蜗牛Redis系列文章目录http://www.cnblogs.com/tdws/tag/NoSql/ 爬虫转载注明地址本文地址—博客园蜗牛 http://www.cnblogs.com/tdws/p/5705782.html 云服务器过期了,这次测试就放在本地(127.0.0.1).三个redis客户端,端口分别为6379,6380,6381. 首先将你的redis复制三份(我使用的是redis3.2.1),如果你下载不到,可以留下邮箱或者给我私信. 首先打开cmd,用cd找到你的redis文…
一.数据备份 1.使用mysqldump命令备份 mysqldump命令将数据库中的数据备份成一个文本文件.表的结构和表中的数据将存储在生成的文本文件中. mysqldump命令的工作原理很简单.它先查出需要备份的表的结构,再在文本文件中生成一个CREATE语句.然后,将表中的所有记录转换成一条INSERT语句.然后通过这些语句,就能够创建表并插入数据. 1.备份一个数据库 mysqldump基本语法: mysqldump -u username -p dbname table1 table2…
MySQL 数据备份与还原 原贴:http://www.cnblogs.com/kissdodog/p/4174421.html   一.数据备份 1.使用mysqldump命令备份 mysqldump命令将数据库中的数据备份成一个文本文件.表的结构和表中的数据将存储在生成的文本文件中. mysqldump命令的工作原理很简单.它先查出需要备份的表的结构,再在文本文件中生成一个CREATE语句.然后,将表中的所有记录转换成一条INSERT语句.然后通过这些语句,就能够创建表并插入数据. 1.备份…
1   前言 首先承诺:对于从Windows系统迁移过来的用户,困扰大家的  “Linux系统下是否可以把系统文件和用户文件分开到C盘和D盘中” 的问题也可以得到完满解决. 之前的文章对Linux的文件系统有过粗略的介绍,但是了解文件系统结构后,有什么用途呢?在本章节将围绕 "基于用户角度的Linux下的数据备份和迁移" 的场景,对Linux文件系统相关知识进行实地应用,产生生产力 . 在了解Linux文件系统之后,就可以 艺高人胆大 玩转Linux的文件目录了. 本文案例 --- &…
RSYNC是Remote Sync 远程同步的简称,与SCP的比较,SCP= 无法备份大量数据,类似windows的复制,而rsync=边复制 ,边统计,边比较,可以备份大量数据.可以镜像保存整个目录树和文件系统.可以很容易做到保持原来文件的权限.时间.软硬链接等等.无须特殊权限即可安装.快速:第一次同步时 rsync 会复制全部内容,但在下一次只传输修改过的文件.压缩传输:rsync 在传输数据的过程中可以实行压缩及解压缩操作,因此可以使用更少的带宽.安全:可以使用scp.ssh等方式来传输文…
@echo on setlocal rem 设置数据库和备份文件参数... set sid=testorcl set username=testname set password=testpwd set bakdir=E:\BackUp\HOMAOA set bakdate=%date:~11% set connect=%username%/%password%@%sid% rem 执行文件备份...... exp %connect% buffer=100000000 file=%bakdir%…
Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已知办公 楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网 络电缆使得它们可以互相备份.然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味 着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份.任一…
备份织梦网站数据 dedecms备份教程 进入DedeCms后台 -> 系统 -> 数据库备份/还原 备份文件在\data\backupdata 下载数据库备份资料\data\backupdata,将backupdata文件夹下载到本地 下载附件文件夹,将根目录下的uploads文件下载到本地. dedecms还原教程 还原织梦网站数据 如果织梦网站出现问题,如何还原网站呢? 如果是普通还原,参照此方式: 一.将最新的数据库备份文件夹backupdata和附件文件夹uploads上传到空间替换…