题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 出现了一个问题:虽然训练的模型能够有很好的预测准确率,但是使用minimize函数时候始终无法成功,无论设计的迭代次数有多大,如下图: import numpy as np import scipy.io as scio import matplotlib.pyplot as plt import scipy.optimize as op # X:5000*400 # Y:5000*10 # a1:5000*401(后500…
题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np import matplotlib.pyplot as plt import scipy.optimize as op #S函数 def sigmoid(z): g = 1/(1+np.exp(-z)) return g #cost计算函数 def costFunction(theta, X, y): t…
题目下载[传送门] 题目简述:识别图片中的数字,训练该模型,求参数θ. 第1步:读取数据文件: %% Setup the parameters you will use for this exercise input_layer_size = 400; % 20x20 Input Images of Digits hidden_layer_size = 25; % 25 hidden units num_labels = 10; % 10 labels, from 1 to 10 % (note…
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时候就是深度学习啦 没有明确的规则来设计最好有多少个隐藏层,可以根据实验测试的误差以及准确度来实验测试并改进. 交叉验证方法(cross -validation):把样本分为K份,取一份为测试集,其他为训练集.共取K次,然后取其平均值 BP的步骤 1.初始化权重(weight)以及偏向(bias),随…
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和…
转载:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和 suo.im/96wD3.本教程的作者为 KDnuggets 副主编兼…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 4.正则化与过拟合问题 Regularization/The Problem of Overfitting 1 过拟合问题 The problem of overfitting 首先,Andrew Ng还是对之前几节中提到过的房屋面积-房价问题进…
原文 http://blog.csdn.net/abcjennifer/article/details/7749309 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
[pytorch学习笔记]-搭建神经网络进行关系拟合 学习自莫烦python 目标 1.创建一些围绕y=x^2+噪声这个函数的散点 2.用神经网络模型来建立一个可以代表他们关系的线条 建立数据集 import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt x=torch.unsqueeze(torch.linspace(-1,1,1…