Inception V1、V2、V3和V4】的更多相关文章

论文地址 Inception V1 :Going Deeper with Convolutions Inception-v2 :Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Inception-v3 :Rethinking the Inception Architecture for Computer Vision Inception-v4 :Inception-Res…
from:https://blog.csdn.net/qq_14845119/article/details/73648100 Inception v1的网络,主要提出了Inceptionmodule结构(1*1,3*3,5*5的conv和3*3的pooling组合在一起),最大的亮点就是从NIN(Network in Network)中引入了1*1 conv,结构如下图所示,代表作GoogleNet 假设previous layer的大小为28*28*192,则, a的weights大小,1*…
V1,V2已经不被推荐使用,谷歌强烈推荐使用V3. 本人在选择时着实纠结了良久,现在总结如下: 对于V1,现在已经申请不到API KEY了,所以不要使用这个版本.这个是网址:https://developers.google.com/maps/documentation/android/v1/maps-api-signup: 对于V2,要求ANDROID SDK版本3.0以上好像,所以如果你的目标手机的版本是<3的话,V2也不适合:这个版本还是需要密钥的: 对于V3,符合以上两种情况的,就用V3…
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得比赛. 比如N = 3.K = 2.不管A怎样拿,B都能够拿到最后1颗石子. Input 第1行:一个数T.表示后面用作输入測试的数的数量.(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K.中间用空格分隔.(1 <= N,K <= 10^9) Output…
react-router v4 是完全重写的,所以没有简单的迁移方式,这份指南将为您提供一些步骤,以帮助您了解如何升级应用程序. 注意: 这份迁移指南适用于react-router v2和v3,但为简洁起见,对以前版本的引用仅提及v3. The Router Routes 路由嵌套 on* 属性 Switch The Router 在react-router v3中,仅有一个<Router> 组件,需要提供 history 对象作为他的属性 (prop). 此外,您可以使用 routes 作为…
前言 \(HE\)沾\(BJ\)的光成功滚回家里了...这堆最大子段和的题抠了半天,然而各位\(dalao\)们都已经去做概率了...先%为敬. 引流之主:老姚的博客 最大M子段和 V1 思路 最简单的ver.数据范围在5000以内,可以考虑暴力一点的做法\(O(n^3)\),定义\(dp\)状态\(dp[i][j]\),递推式子: \[dp[i][j]=max\{dp[i-1][j],dp[k][j-1]\}+a[i]\ (j-1\le k<i) \] 其中\(i\)表示序列中前\(i\)个元…
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6 1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 输入 1个数N(N <= 10^9) 输出 公约数之和 输入样例 6 输出样例 15 题解 \[ \sum_{i=1}^n\gcd(i,n)=\sum_{d|n}d\varphi(n) \] 暴力搞就行了. 1188 最大公约数之和 V2 给出一个数N,输出小于等于N的所有数,两两之间的最大公约数之和. 相当于计…
Inception模块分为V1.V2.V3和V4. V1(GoogLeNet)的介绍 论文:Going deeper with convolutions 论文链接:https://arxiv.org/pdf/1409.4842v1.pdf 主要问题: 每张图中主体所占区域大小差别很大.由于主体信息位置的巨大差异,那选择合适的卷积核相对来说就比较困难.信息分布更全局性的图像适合选用较大的卷积核,信息分布较局部的图像适合较小的卷积核. 非常深的网络更容易过拟合.将梯度更新传输到整个网络是很困难的.…
0 - 背景 在经过了inception v1的基础上,google的人员还是觉得有维度约间的空间,在<Rethinking the Inception Architecture for Computer Vision>一文中,通过卷积分解.网格约间等方式来修改inception模块.当然了在BN那篇论文的附录部分也多少涉及到v2的设计方向. 因为第一篇论文并没有详细说明设计inception v1的一些具体原理,而其主要是从如何减小模型的参数量上下手,所以v3上对这部分做了个简单的原则说明:…
论文原址:https://arxiv.org/pdf/1409.4842.pdf 代码连接:https://github.com/titu1994/Inception-v4(包含v1,v2,v4)  摘要 本文提出了一个深层的卷积网络结构-Inception,该结构的主要特点是提高了网络内部计算资源的利用率.在预估计算资源消耗量不变的情况下增加网络的深度及宽度.为了进行有效的优化,结构决策基于Hebbian原理及多尺寸处理操作.本文思想的一个经典实现是GoogLeNet,网络的深度为22层,该网…