【Spark】SparkStreaming-Checkpoint-容错】的更多相关文章

spark是迭代式的内存计算框架,具有很好的高可用性.sparkStreaming作为其模块之一,常被用于进行实时的流式计算.实时的流式处理系统必须是7*24运行的,同时可以从各种各样的系统错误中恢复. 在实际使用中,容错和数据无丢失显得尤为重要.最近看了官网和一些博文,整理了一下对Spark Streaming的容错和数据无丢失机制. checkPoint机制可保证其容错性.spark中的WAL用来改进恢复机制,保证数据的无丢失. checkPoint机制介绍 Spark Streaming需…
1 Overview 当第一次碰到 Spark,尤其是 Checkpoint 的时候难免有点一脸懵逼,不禁要问,Checkpoint 到底是什么.所以,当我们在说 Checkpoint 的时候,我们到底是指什么? 网上找到一篇文章,说到 Checkpoint,大概意思是检查点创建一个已知的节点,SQL Server 数据库引擎可以在意外关闭或崩溃后从恢复期间开始应用日志中包含的更改.所以你可以简单理解成 Checkpoint 是用来容错的,当错误发生的时候,可以迅速恢复的一种机制,这里就不展开讲…
文章目录 检查点机制 驱动器程序容错 工作节点容错 接收器容错 处理保证 检查点机制 Metadata checkpointing -- 将定义流计算的信息存入容错的系统如HDFS. Data checkpointing -- 将产生的RDDs存入可靠的存储空间.代码实现如下图 val sparkContext = new SparkContext(new SparkConf()) val ssc = new StreamingText(sparkContext,duration) ssc.ch…
一.Spark RDD容错原理 RDD不同的依赖关系导致Spark对不同的依赖关系有不同的处理方式. 对于宽依赖而言,由于宽依赖实质是指父RDD的一个分区会对应一个子RDD的多个分区,在此情况下出现部分计算结果丢失,单一计算丢失的数据无法达到效果,便采用重新计算该步骤中的所有数据,从而会导致计算数据重复:对于窄依赖而言,由于窄依赖实质是指父RDD的分区最多被一个子RDD使用,在此情况下出现部分计算的错误,由于计算结果的数据只与依赖的父RDD的相关数据有关,所以不需要重新计算所有数据,只重新计算出…
一.Checkpoint相关源码分为四个部分 1.Checkpoint的基本使用:spark_core   &   spark_streaming 2.初始化的源码 3.Checkpoint的job生成及执行的过程 4.读Checkpoint的过程 二.Checkpoint的基本使用 Checkpoint可以是还原药水.辅助Spark应用从故障中恢复.SparkStreaming宕机恢复,适合调度器有自动重试功能的.对于 SparkCore 则适合那些计算链条超级长或者计算耗时的关键点进行 Ch…
官方这么说的 [Since Spark 1.2] Configuring write ahead logs - Since Spark 1.2, we have introduced write ahead logs for achieving strong fault-tolerance guarantees. If enabled, all the data received from a receiver gets written into a write ahead log in the…
Checkpoint机制 通过前期对Spark Streaming的理解,我们知道,Spark Streaming应用程序如果不手动停止,则将一直运行下去,在实际中应用程序一般是24小时*7天不间断运行的,因此Streaming必须对诸如系统错误.JVM出错等与程序逻辑无关的错误(failures )具体很强的弹性,具备一定的非应用程序出错的容错性.Spark Streaming的Checkpoint机制便是为此设计的,它将足够多的信息checkpoint到某些具备容错性的存储系统如HDFS上,…
转载自:https://mp.weixin.qq.com/s/EQgDUSf3TK0oVg1xmg-49Q Checkpoint是Spark Streaming中的核心机制,它为应用程序的7*24小时LongRunning提供保证.Spark Checkpoint是基于JVM Serializable机制来实现,它会定时将整个Checkpoint对象从内存中序列化到外部存储(如HDFS),在应用程序异常重启时,对它进行反序列化,从而恢复到重启之前的状态. 但是基于JVM Serializable…
Spark Streaming 为了实现容错特性,接收到的数据需要在集群的多个Worker 节点上的 executors 之间保存副本(默认2份).当故障发生时,有两种数据需要恢复: 1. 已接收并且有副本的数据.当只有一台worker 发生故障时,这些数据不会丢失 2. 已接收但还没有副本的数据.只能从数据源重新获取 我们需要考虑两种发生故障的情况: 1. Worker 节点故障.如果receiver 运行在发生故障的worker 上,缓存的数据将丢失. 2. Driver 发生故障.很显然…
一. 容错机制 1.背景 要理解Spark Streaming提供的容错机制,先回忆一下Spark RDD的基础容错语义: 1.RDD,Ressilient Distributed Dataset,是不可变的.确定的.可重新计算的.分布式的数据集.每个RDD都会记住确定好的计算操作的血缘关系, (val lines = sc.textFile(hdfs file); val words = lines.flatMap(); val pairs = words.map(); val wordCou…