bzoj 1898 矩阵快速幂】的更多相关文章

思路:因为鱼的周期为2, 3, 4, 所以以12个为周期,我们拿走12步得到的矩阵进行快速幂,余下的再进行一次矩阵乘法. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define y1 skldjfskldjg #define y2 skldfjsklejg using…
题意:定义Concatenate(1,N)=1234567……n.比如Concatenate(1,13)=12345678910111213.给定n和m,求Concatenate(1,n)%m. (1=<n<=10^18,1<=m<=10^9) 思路:令f[n]表示Concatenate(1,n).那么有: f[i]=f[i-1]*10+(i-1)+1   1<=i<=9 f[i]=f[i-1]*100+(i-1)+1  10<=i<=99 …… 因此可用矩…
思路:矩阵快速幂搞一搞. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define PLI pair<LL, int> #define ull unsigned long long using namespace std; ; const int inf =…
思路:不能走走过来的路,变点交换跑矩阵快速幂. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PII pair<int, int> #define y1 skldjfskldjg #define y2 skldfjsklejg using namespace std; ; ; const int inf = 0x…
建立矩阵,跑快速幂 /************************************************************** Problem: 4000 User: idy002 Language: C++ Result: Accepted Time:32 ms Memory:836 kb ****************************************************************/ #include <cstdio> #include…
思路: 肯定每回只加最大值和次大值 如果 一开始的最大值>0且次大值<0 那就一直加 加到次大值>0 搞一个矩阵 推斐波那契数列 求和 就好- //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int mod=10000007,N=100050; #define int long long int n,k…
注意到周期234的lcm只有12,也就是以12为周期,可以走的状态是一样的 所以先预处理出这12个状态的转移矩阵,乘起来,然后矩阵快速幂优化转移k/12次,然后剩下的次数暴力转移即可 #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int mod=10000; int n,m,s,t,k,x,y,nf,T,w[60]; struct jz { int a[6…
思路: T的最小公倍数是12 那么12以内暴力 整除12 的部分用矩阵快速幂 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m,st,ed,k,nfish,T,p[5],can[13][55]; struct Matrix{ int a[55][55]; void init(){memset(a,0,sizeof(a)…
每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) ---------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   const int maxn = 1009;   int N,…
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j)表示dp(x-1, j)对dp(x, i)的贡献.然后用矩阵快速幂就可以了. 时间复杂度O(M3logN + M) ------------------------------------------------------------------- #include<bits/stdc++.h>…