TensorFlow分布式部署【单机多卡】】的更多相关文章

让TensorFlow飞一会儿 面对大型的深度神经网络训练工程,训练的时间非常重要.训练的时间长短依赖于计算处理器也就是GPU,然而单个GPU的计算能力有限,利用多个GPU进行分布式部署,同时完成一个训练任务是一个很好的办法.对于caffe来说,由于NCCL的存在,可以直接在slover中指定使用的GPU.然而对于Tensorflow,虽然Contrib库中有NCCL,但是我并没有找到相关的例子,所以,还是靠双手成就梦想. 原理简介 TensorFlow支持指定相应的设备来完成相应的操作,所以如…
让TensorFlow们飞一会儿 前一篇文章说过了TensorFlow单机多卡情况下的分布式部署,毕竟,一台机器势单力薄,想叫兄弟们一起来算神经网络怎么办?我们这次来介绍一下多机多卡的分布式部署. 其实多机多卡分布式部署在我看来相较于单机多卡分布式更容易一些,因为一台机器下需要考虑我需要把给每个device分配哪些操作,这个过程很繁琐.多台机器虽然看起来更繁琐,然而我们可以把每一台机器看作是一个单卡的机器,并且谷歌爸爸已经把相对复杂的函数都给封装好了,我们直接拿来用就行.为什么这么说呢?我们首先…
关于tensorflow的分布式训练和部署, 官方有个英文的文档介绍,但是写的比较简单, 给的例子也比较简单,刚接触分布式深度学习的可能不太容易理解.在网上看到一些资料,总感觉说的不够通俗易懂,不如自己写一个通俗易懂给大家分享一下. 如果大家有看不懂的,欢迎留言,我再改文章,改到大学一年级的学生可以看懂的程度. 1. 单机多GPU训练先简单介绍下单机的多GPU训练,然后再介绍分布式的多机多GPU训练.单机的多GPU训练, tensorflow的官方已经给了一个cifar的例子,已经有比较详细的代…
pytorch的并行分为模型并行.数据并行 左侧模型并行:是网络太大,一张卡存不了,那么拆分,然后进行模型并行训练. 右侧数据并行:多个显卡同时采用数据训练网络的副本. 一.模型并行 二.数据并行 数据并行的操作要求我们将数据划5分成多份,然后发送给多个 GPU 进行并行的计算. 注意:多卡训练要考虑通信开销的,是个trade off的过程,不见得四块卡一定比两块卡快多少,可能是训练到四块卡的时候通信开销已经占了大头 下面是一个简单的示例.要实现数据并行,第一个方法是采用 nn.parallel…
[翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 目录 [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 1. 原文摘要 2. 编程模型和基本概念 2…
1.知识点 """ 单机多卡:一台服务器上多台设备(GPU) 参数服务器:更新参数,保存参数 工作服务器:主要功能是去计算 更新参数的模式: 1.同步模型更新 2.异步模型更新 工作服务器会默认一个机器作为老大,创建会话 tensorflow设备命名规则: /job:ps/task:0 job:ps,服务器类型 task:0,服务器第几台 /job:worker/task:0/cpu:0 /job:worker/task:0/gpu:0 /job:worker/task:0/…
[源码解析] TensorFlow 分布式环境(1) --- 总体架构 目录 [源码解析] TensorFlow 分布式环境(1) --- 总体架构 1. 总体架构 1.1 集群角度 1.1.1 概念 1.1.2 示意图 1.1.3 创建 1.1.3.1 创建集群 1.1.3.2 创建任务 1.1.3.3 指定设备 1.2 分布式角度 1.2.1 概念 1.2.2 示意图 1.3 系统角度 1.3.1 概念 1.3.2 示意图 1.4 图操作角度 1.5 通信角度 2. Server 2.1 接…
[源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 目录 [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 1. StrategyBase 1.1 初始化 1.2 使用 1.3 CTL 1.4 Scope 1.4.1 使用 1.4.2 功能 1.4.3 Scope 范围 1.5 StrategyExtendedV2 1.5.1 locality 1.5.2 如何更新 1.6 继承关系 2. 读取数据 2.1 直…
[源码解析] TensorFlow 分布式之 MirroredStrategy 目录 [源码解析] TensorFlow 分布式之 MirroredStrategy 1. 设计&思路 1.1 主要逻辑 1.2 使用 1.3 分析思路 2. 定义 2.1 MirroredStrategy 2.2 MirroredExtended 3. 初始化 3.1 初始化多worker 3.1.1 MultiWorkerMirroredStrategy 3.1.2 CollectiveAllReduceExte…
本文借鉴http://www.cnblogs.com/gossip/p/5977489.html,在此基础上进行了完善,使之成为一个完整版的伪分布式部署说明,在此记录一下! 一.本文目的         介绍如何在同一台虚拟机上搭建高可用的Activemq服务,集群数量包含3个Activemq,当Activemq可用数>=2时,整个集群可用.         本文Activemq的集群数量为3个,分别命名为mq1,mq2,mq3   二.概念介绍 1.伪集群       集群搭建在同一台虚拟机上…