数据来源: kaggle 分析工具:Python 3.6 & jupyter notebook 附上数据:链接: https://pan.baidu.com/s/1D7JNvHmqTIw0OoPXBWzWHA 提取码: hdtt 本篇分析比较基础,集中于清洗和可视化,欢迎各路大神指正 #设置jupyter可以打印多条结果 from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_int…
最近一直断断续续的做这个泰坦尼克生存预测模型的练习,这个kaggle的竞赛题,网上有很多人都分享过,而且都很成熟,也有些写的非常详细,我主要是在牛人们的基础上,按照数据挖掘流程梳理思路,然后通过练习每一步来熟悉应用python进行数据挖掘的方式. 数据挖掘的一般过程是:数据预览——>数据预处理(缺失值.离散值等)——>变量转换(构造新的衍生变量)——>数据探索(提取特征)——>训练——>调优——>验证 1 数据预览 1.1 head() 预览数据集的前面几条数据可以大致…
入门kaggle,开始机器学习应用之旅. 参看一些入门的博客,感觉pandas,sklearn需要熟练掌握,同时也学到了一些很有用的tricks,包括数据分析和机器学习的知识点.下面记录一些有趣的数据分析方法和一个自己撸的小程序. 1.Tricks 1) df.info():数据的特征属性,包括数据缺失情况和数据类型. df.describe(): 数据中各个特征的数目,缺失值为NaN,以及数值型数据的一些分布情况,而类目型数据看不到. 缺失数据处理:缺失的样本占总数比例极高,则直接舍弃:缺失样…
原文地址如下: https://www.kaggle.com/startupsci/titanic-data-science-solutions ---------------------------------------------------------------- 泰坦尼克数据科学解决方案: 1. 工作流程步骤: 在 Data Science Solutions book 这本书里,描述了在解决一个竞赛问题时所需要做的具体工作流程: 问题的定义 获取训练数据以及测试数据 加工.准备以及…
Titanic 沉没 参见:https://github.com/lijingpeng/kaggle 这是一个分类任务,特征包含离散特征和连续特征,数据如下:Kaggle地址.目标是根据数据特征预测一个人是否能在泰坦尼克的沉没事故中存活下来.接下来解释下数据的格式: survival 目标列,是否存活,1代表存活 (0 = No; 1 = Yes) pclass 乘坐的舱位级别 (1 = 1st; 2 = 2nd; 3 = 3rd) name 姓名 sex 性别 age 年龄 sibsp 兄弟姐…
转载 逻辑回归应用之Kaggle泰坦尼克之灾 此转载只为保存!!! ————————————————版权声明:本文为CSDN博主「寒小阳」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/han_xiaoyang/article/details/49797143…
也不知道对不对,就凭着自己的思路写了一个 数据集:https://www.kaggle.com/c/titanic/data import torch import torch.nn as nn import pandas as pd import numpy as np class DataProcessing(object): def __init__(self): pass def get_data(self): data_train = pd.read_csv('train.csv')…
本文首发于“生信补给站”微信公众号,https://mp.weixin.qq.com/s/2W1W-8JKTM4S4nml3VF51w 更多关于R语言,ggplot2绘图,生信分析的内容,敬请关注小号,给您干货. Meta分析的结果使用森林图进行可视化展示很常见,其实COX生存分析也能用森林图展示. 之前分享过绘制KM曲线R|生存分析(1),诺莫图展示COX结果Nomogram(诺莫图) | Logistic.Cox生存分析结果可视化,本文将简单的介绍如何使用R-survminer包绘制Cox生…
比赛地址:https://www.kaggle.com/c/titanic 再次想吐槽CSDN,编辑界面经常卡死,各种按钮不能点,注释的颜色不能改,很难看清.写了很多卡死要崩溃. 我也是第一次参加这个,代码还是看了一下别人介绍的,修改了错误的代码,并且在自己的理解了改进了一点代码,排名从5900到2200,改进还是不错的.而且目前未做任何参数的微调,仅仅是代码改进了一下. 以下介绍代码及分析过程,编辑界面使用jupyter import numpy as np import pandas as…
参考Kernels里面评论较高的一篇文章,整理作者解决整个问题的过程,梳理该篇是用以了解到整个完整的建模过程,如何思考问题,处理问题,过程中又为何下那样或者这样的结论等! 最后得分并不是特别高,只是到34%,更多是整理一个解决问题的思路,另外前面三个大步骤根据思维导图看即可,代码跟文字等从第四个步骤开始写起. ----------------------------------------------------------------------------------------------…