machine learning基础与实践系列】的更多相关文章

由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的<machine learning>.接下来的一些算法的会涉及到视频中的内容. 虽然是计算机科班出身,奈尔太菜,或许远远不够学习机器学习的基本要求.但是本人学习机器学习的目的是为了做数据挖掘的,也就是说不是研究算法本身而是做工程类的,那么理解算法的思路和过程即可,不需要纠结数学证明.所以接下来的博…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine Learning>一书中的开头有讲到:“概率论.决策论.信息论3个重要工具贯穿着<PRML>整本书,虽然看起来令人生畏…”.确实如此,其实这3大理论在机器学习的每一种技法中,或多或少都会出现其身影(不局限在概率模型). <PRML>书中原话:”This chapter also…
声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 符号定义 这里定义<深入浅出ML>系列中涉及到的公式符号,如无特殊说明,符号含义均按下述定义解释: 符号 含义 \(x_j\) 第\(j\)维特征 \(x\) 一条样本中的特征向量,\(x=(1, x_1, x_2, \cdots, x_n)\) \(x^{(i)}\) 第\(i\)条样本 \(x_{j}^{(i)}\) 第\(i\)条样本的第\(j\)维特征 \(y^{(i)}\)…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 3 Learning Theory 3.1 Regularization and model selection 模型选择问题:对于一个学习问题,可以有多种模型选择.比如要拟合一组样本点,…
声明:本文翻译自Vishal Maini在Medium平台上发布的<Machine Learning for Humans>的教程的<Part 5: Reinforcement Learning>的英文原文(原文链接).该翻译都是本人(tomqianmaple@outlook.com)本着分享知识的目的自愿进行的,欢迎大家交流! 关键词:探索和利用.马尔科夫决策过程.Q-Learning.策略学习.深度增强学习. [Update 9/2/17] 现在本系列教程已经出了电子书了,可以…
机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一个矩阵或向量 随机矩阵方阵生成 magic矩阵生成(每行每列相加和相同) 获取矩阵的维度size 获取矩阵的最大维度length 矩阵操作.获取单个元素.行.列.赋值 矩阵append.矩阵元素放到一个列向量中 矩阵运算 矩阵乘法 A*C:根据矩阵乘法公式相乘. A .* B:矩阵元素对应相乘. 矩…
OpenStack实践系列①openstack简介及基础环境部署 一.OpenStack初探1.1 OpenStack简介 OpenStack是一整套开源软件项目的综合,它允许企业或服务提供者建立.运行自己的云计算和存储设施.Rackspace与NASA是最初重要的两个贡献者,前者提供了“云文件”平台代码,该平台增强了OpenStack对象存储部分的功能,而后者带来了“Nebula”平台形成了OpenStack其余的部分.而今,OpenStack基金会已经有150多个会员,包括很多知名公司如“C…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …