二阶泰勒展开: f(x)=f(0)+f′Tx+12xTf′′x+o(⋅) 对等式右端求导,并置 0,得 x=f′′−1f′ 1. 方向导数与梯度 设有单位向量 h=(h1,h2,⋯,hn)∈Rn(当然不要求 hi 之间必须相等),它表示 n 维空间中的一个方向(长度是单位 1),可微(多元)函数 f(x) 在点 x 沿 h 方向的方向导数(directional derivative,沿着某方向的导数)定义为: ∂f(x)∂h=limα→0+f(x+αh)−f(x)α 对 f(x+αh) 执行(…
方向导数和梯度的直观理解,from知乎-马同学: https://www.zhihu.com/question/36301367 BGD,SGD: https://www.cnblogs.com/guoyaohua/p/8542554.html…
梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以).在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值.反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了.在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法. 简单地说,梯…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课程例如Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,经典书籍例如<统计学习方法>等,同时也参考了大量网上的相关资料(在后面列出).    前言 机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理,那么搞懂什么是梯度,…
题目链接: Function 分析: icpccamp里的方法不会,我用了一个nex[]数组存储当前点ai需要取模的下一个点aj的编号j,如果aj>ai,就不用遍历. 时间为920ms 代码: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ],nex[]; int main() { for(scanf("%d",&t);t--;)…
机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Taylor展开及其应用 常见概率分布和推导 指数族分布 共轭分布 统计量 矩估计和最大似然估计 区间估计 Jacobi矩阵 矩阵乘法 矩阵分解RQ和SVD 对称矩阵 凸优化 微积分与梯度 常数e的计算过程 常见函数的导数 分部积分法及其应用 梯度 上升/下降最快方向 凸函数 Jensen不等式 自然常数…
1.方向导数 2. 梯度 3. 凸函数: 4. 凸函数的判定 5. 凸函数的一般表示 6. 凸性质的应用…
警告:本文为小白入门学习笔记 由于之前写过详细的过程,所以接下来就简单描述,主要写实现中遇到的问题. 数据集是关于80人两门成绩来区分能否入学: 数据集: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearning&doc=exercises/ex4/ex4.html 假设函数(hypothesis function):   ----------------------------------…
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度上升法. 本文将从最优化问题谈起,回顾导数与梯度的概念,引出梯度下降的数据推导:概括三种梯度下降方法的优缺点,并用Python实现梯度下降(附源码). 1 最优化问题 最优化问题是求解函数极值的问题,…
转载  https://blog.csdn.net/itchosen/article/details/77200322 各种神经网络优化算法:从梯度下降到Adam方法     在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法? 这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法. 什么是优化算法? 优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x). 模型内部有些参数…