1.2、Logistics Regression算法实践】的更多相关文章

 1.1.Logistics Regression算法实践 有了上篇博客的理论准备后,接下来,我们用以及完成的函数,构建Logistics Regression分类器.我们利用线性可分的数据作为训练样本来训练.在构建模型的过程中,主要有两个步骤:(1)利用训练样本训练模型,(2)利用训练好的模型对新样本进行预测. 1.1.1.利用训练样本训练Logistics Regression模型 训练模型的主函数: if __name__=="__main__": print("---…
Softmax Regression算法实践 有了上篇博客的理论知识,我们可以利用实现好的函数,来构建Softmax Regression分类器,在训练分类器的过程中,我们使用多分类数据作为训练数据:如图 1.利用训练数据对模型进行训练: 完整代码为: # -*- coding: UTF- -*- # date:// # User:WangHong import numpy as np def gradientAscent(feature_data,label_data,k,maxCycle,a…
1.线性可分VS线性不可分 对于一个分类问题,通常可以分为线性可分与线性不可分两种 .如果一个分类问题可以使用线性判别函数正确的分类,则称该问题为线性可分.如图所示为线性可分,否则为线性不可分: 下图为线性不可分: 1.2.Logistics Regression模型 Logistics Regression模型为广义的线性模型的一种,属于线性的分类模型.对于线性可分问题,需要找到一条直线,能够将两个不同的类分开,这条直线也称为超平面.对于上述超平面,可以使用如下的线性函数表示: 其中W为权重,…
logistics regression用于解决一些二分类问题.比如(纯假设)网上购物时,网站会判断一个人退货的可能性有多大,如果该用户退货的可能性很大,那么网站就不会推荐改用户购买退费险.反之,如果该用户退货的可能性不大,则可以推荐该用户购买退费险.比如如下数据: 历史该类目退货率,性别,年龄,商品价格,是否新注册用户,商品类别, 发生退货 0.5 ,0 ,20 , 300 ,0 ,8 , 1 0.3 ,1 ,30 , 50 ,0 ,5 , 0 假设以上数据是电商网站总结的一些用户购买行为数据…
参考链接: https://github.com/HIT-SCIR/ltp/blob/master/doc/install.rst http://www.xfyun.cn/index.php/services/ltp/detail?&app_id=NTZmYzg5ZWE= http://www.ltp-cloud.com/document/#api_rest_format_json 其他分词算法参考链接: NLPIR:http://www.nlpir.org/    http://www.dat…
机器学习算法实践:Platt SMO 和遗传算法优化 SVM 之前实现了简单的SMO算法来优化SVM的对偶问题,其中在选取α的时候使用的是两重循环通过完全随机的方式选取,具体的实现参考<机器学习算法实践-SVM中的SMO算法>.(http://pytlab.github.io/2017/09/01/机器学习算法实践-SVM中的SMO算法/) 本文在之前简化版SMO算法的基础上实现了使用启发式选取α对的方式的Platt SMO算法来优化SVM.另外由于最近自己也实现了一个遗传算法框架GAFT,便…
Author: 相忠良(Zhong-Liang Xiang) Email: ugoood@163.com Date: Sep. 23st, 2017 根据 Andrew Ng 老师的深度学习课程课后作业及指导,参照吴老师代码完成了这个LR的coding. (重要)吴老师建议,数据应组织成下列形式,有利于扫除编程bug: X.shape = (n_x, m), n_x是样本维度,m是样本个数 Y.shape = (1, m) w, b应该分开,其中: b is a scaler w.shape =…
在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancing Links)算法求解数独 在前文中可知,舞蹈链(Dancing Links)算法在求解精确覆盖问题时效率惊人. 那利用舞蹈链(Dancing Links)算法求解数独问题,实际上就是下面一个流程 1.把数独问题转换为精确覆盖问题 2.设计出数据矩阵 3.用舞蹈链(Dancing Links)算法…
支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: def __init__(self, dataSet, labels, C, toler, kernel_option): self.train_x = dataSet # 训练特征 self.train_y = labels # 训练标签 self.C = C # 惩罚参数 self.toler…
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…