1.提高程序效率,保证执行速度 (1)尽量使用向量化运算 (2)尽量使用矩阵,必要时才使用数据框 (3)使用read.table时,尽量显式设定colClasses和nrows,设定comment.char="",把不需要的列设置为NULL (4)将外部数据导入矩阵时,使用scan函数 (5)删除临时对象和不再用的对象 (6)用ls.objects()列出工作区对象占用的内存大小 2.把数据存在外部 (1)ff包:将数据保存在硬盘,操作起来跟在内存中一样 (2)bigmemory包:支…
前言 本文接上一篇文章 R语言基于S3的面向对象编程,本文继续介绍R语言基于S4的面向对象编程. S4对象系统具有明显的结构化特征,更适合面向对象的程序设计.Bioconductor社区,以S4对象系统做为基础架构,只接受符合S4定义的R包. 目录 S4对象介绍 创建S4对象 访问对象的属性 S4的泛型函数 查看S4对象的函数 S4对象的使用 1 S4对象介绍 S4对象系统是一种标准的R语言面向对象实现方式,S4对象有明确的类定义,参数定义,参数检查,继承关系,实例化等的面向对象系统的特征. 2…
运行的条件是一元逻辑向量(TRUE或FALSE)并且不能有缺失(NA).else部分是可选的.如果 仅有一个语句,花括号也是可以省略的. 下面的代码片段是一个例子: plot(x, y) } else { png("myplot.png") plot(x, y) dev.off() } 如果代码交互运行,interactive()函数返回TRUE,同时输出一个曲线图.否则,曲线图被存 在磁盘里.你可以使用第21章中的if()函数. . ifelse() ifelse()是函数if()的…
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域…
R语言  ggplot2包的学习   分析数据要做的第一件事情,就是观察它.对于每个变量,哪些值是最常见的?值域是大是小?是否有异常观测? ggplot2图形之基本语法: ggplot2的核心理念是将绘图与数据分离,数据相关的绘图与数据无关的绘图分离ggplot2是按图层作图ggplot2保有命令式作图的调整函数,使其更具灵活性ggplot2将常见的统计变换融入到了绘图中.ggplot的绘图有以下几个特点:第一,有明确的起始(以ggplot函数开始)与终止(一句语句一幅图):其二,图层之间的叠加…
开学的时候,男神给了数据(.xlsx格式)让用R语言分析分析,作为编程小白,读了一天都没读近R,更别提如何分析了. 现在小伙伴们都喜欢读txt 和csv格式的,好多xlsx的表格读不进R,将xlsx格式另存为csv格式就可以读进去啦.但偶尔会有格式不兼容的情况,会干掉有些数据,导致我们最后跑出的结果和男神给的案例结果不一样.其中一种解决方法是(我认为好用的): (1)安装xlsx包时会提醒需要rJava包,而rJava包需要配置电脑的环境变量,没有环境变量会导致包装不上,装不上! 首先电脑要安装…
1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) 表示把1 - 100的所有数字都给x这个变量 5.查看x的类型:>mode(x) 6.查看x的长度:>length(x) 7.将两个向量组成一个矩阵: >rbind(x1, x2)  注:r是row的意思,即行,按行组成矩阵. >cbind(x1, x2)  注c是column的意思,…
准备 第一步就是安装R语言环境以及RStudio 图绘制准备 首先安装库文件,敲入指令,回车 install.packages('corrplot') 然后安装excel导入的插件,点击右上角import Dataset,选中From excel即可. 这些操作都很简单~~ 数据预处理 然后到了数据输入了,这么多数据,我们总不能一行输入吧?那得有多蠢 于是我们利用上了数据导入功能,当当当~~ 然而理想很丰满,现实却很蛋疼,导入的excel数据格式不是我们希望的矩阵格式ORZ! 哎,休息下喝杯茶,…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
R语言由于效率问题,实现自然语言处理的分析会受到一定的影响,如何提高效率以及提升词向量的精度是在当前软件环境下,比较需要解决的问题. 笔者认为还存在的问题有: 1.如何在R语言环境下,大规模语料提高运行效率? 2.如何提高词向量的精度,或者说如何衡量词向量优劣程度? 3.词向量的功能性作用还有哪些值得开发? 4.关于语义中的歧义问题如何消除? 5.词向量从"词"往"短语"的跨越? 转载请注明出处以及作者(Matt),欢迎喜欢自然语言处理一起讨论~ ---------…
本文对应<R语言编程艺术> 第14章:性能提升:速度和内存: 第15章:R与其他语言的接口: 第16章:R语言并行计算 ========================================================================= 性能提升:速度和内存 要使R代码运行速度更快,有以下建议: 通过向量化的方式优化.使用字节码编译等: 将代码中最消耗CPU的核心部分用编译型语言编写,如C或C++: 将代码用某种并行的方式编写. 消除显示循环: 采用向量化提升速度…
2.1数据集的概念 变量的类型是不同的,比如标示符.日期变量.连续变量.名义变量.有序型变量等,记得数据挖掘导论中有专门的描述. R可以处理的数据类型包括了数值型.字符型.逻辑型.复数型(虚数).原生型(字节). 2.2数据结构 R拥有很多存储数据的对象类型,包括 标量.向量.矩阵.数组.数据框.列表.它们可以用下图表示: 因子是R中的名义型或者有序型变量,比较特殊. 2.2.1向量 标量是只有一个元素的向量,一般用来保存常量.其他没什么说的. seq函数: seq(, to = , by =…
R语言编程中的常见错误有一些错误是R的初学者和经验丰富的R程序员都可能常犯的.如果程序出错了,请检查以下几方面. 使用了错误的大小写.help().Help()和HELP()是三个不同的函数(只有第一个是正确的). 忘记使用必要的引号.install.packages("gclus")能够正常执行,然而Install.packages(gclus)将会报错. 在函数调用时忘记使用括号.例如,要使用help()而非help.即使函数无需参数,仍需加上(). 在Windows上,路…
本文对应<R语言实战>前3章,因为里面大部分内容已经比较熟悉,所以在这里只是起一个索引的作用. 第1章       R语言介绍 获取帮助函数 help(), ? 查看函数帮助 example() 使用函数示例 vignette() 列出vignette文档 vignette("svmdoc") 打开对应文档 管理工作空间 getwd() 显示当前工作目录 setwd("mydirectory") 修改当前工作目录为mydirectory rm(objec…
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y…
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值…
R语言数据集的字段含义 作者:马文敏 选择一种数据结构来储存数据 将数据输入或导入到这个数据结构中 数据集的概念 数据集通常是有数据结构的一个矩形数组,行表示规则,列表示变量. 不同的行业对数据集的行和列的叫法不同 统计学家称他们为观测和变量 数据库分析为记录和字段 示例分析者叫他们示例 R语言可以处理的数据类型有很多种包括数据型,字符型,逻辑性,原生性. 2.数据结构 R语拥有很多用于储存数据的对象类型,包括标量,向量,矩阵,数组,数据框和列表. 向量 向量数据必须要有相同的类型和模式的数据,…
特征值选择技术要点                          作者:王立敏 文章来源:  网络 1.特征值 特征值是线性代数中的一个重要概念.在数学,物理学,化学,计算机等领域有着广泛的应用.设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值或本征值.非零n维列向量x称为矩阵A的属于特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量. 2.使用R语言的Boruta包进行特征选择 在数据分析过程中,利用各种图表进行数据探索是必要的前期工作…
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较. 一.日期分组 1.关于时间的包都有很多很好的日期分组应用. 2.cut()函数 cut(x, n):将连续型变量x分割为有着n个水平的因子 cut(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE, dig.lab = 3, ordered_result = F…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 数据选取与简单操作: which 返回一个向量中指定元素的索引 which.max 返回最大元素的索引 which.min 返回最小元素的索引 sample 随机在向量中抽取元素 subset 根据条件选取元素 sort 升序排列元素 rev 反转所有元素 order 获取排序后的索引 table 返回频数表 cut 将数据分割为几部分 spl…
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y…
本文对应<R语言编程艺术> 第8章:数学运算与模拟: 第10章:输入与输出: 第11章:字符串操作: 第12章:绘图 ========================================================================= 数学运算与模拟 数学函数: 数学函数 说明 exp() 以自然常数e为底的指数函数 log() 自然对数 log10() 以10为底的常用对数 sqrt() 平方根 abs() 绝对值 sin(), cos() 三角函数 min()…
本文对应<R语言编程艺术> 第7章:R语言编程结构: 第9章:面向对象的编程: 第13章:调试 ========================================================================= R语言编程结构 控制语句: 循环: for (n in x) { } while (condition) { } repeat { } 另外break也可以用在另两种形式的循环语句中.注意repeat没有跳出循环的判断条件,因此使用break(或者类似r…
本文对应<R语言编程艺术>第2章:向量:第3章:矩阵和数组:第4章:列表:第5章:数据框:第6章:因子和表 ========================================================================= R语言最基本的数据类型就是向量(vector),单个数值和矩阵都是向量的一种特例. 声明:R中不需要声明变量,但是注意函数式语言的特性,如果读写向量中的元素时,R事先不知道对象是向量的话,则函数没有执行的对象.如下代码是无法工作的: y[1]…
这本书与手上其他的R语言参考书不同,主要从编程角度阐释R语言,而不是从统计角度.因为之前并没有深刻考虑这些,因此写出的代码往往是一条条命令的集合,并不像是“程序”,因此,希望通过学习这本书,能提高编程效率,以及让自己更像是一个“程序员”. 本文对应<R语言编程艺术>第1章:快速入门. 生成向量的函数c(),这里c表示“连接”(concatenate) 打印列表方式: print(listname) str(listname) 第一种将所有信息全部打印,第二种只是显示对象结构(structure…
R中的帮助文档非常有用,其中有四种类型的帮助 help(functionname) 对已经加载包所含的函数显示其帮助文档,用?号也是一样的. help.search('keyword') 对已经安装的包搜索关键词,用??号功能一样. help(package='packagename') 显示已经安装的包的描述和函数说明 RSiteSearch('keyword') 在官方网站上联网搜索 R语言的启动 R语言启动后会首先查找有无.Rprofile文档,用户可通过编辑.Rprofile文档来自定义…
数据集——iris(R语言自带鸢尾花包) 一.scale函数 scale函数默认的是对制定数据做均值为0,标准差为1的标准化.它的两个参数center和scale: 1)center和scale默认为真,即T 2)center为真表示数据中心化 3)scale为真表示数据标准化 中心化:所谓数据的中心化是指数据集中的各项数据减去数据集的均值. 标准化:标准化就是数据在中心化之后再除以标准差.变换后值域为[0,1]. # 标准化与中心化data(iris) # 读入数据head(iris) #查看…
R语言编程艺术讲矩阵这节时,举了个随机噪声模糊罗斯福总统画像的例子.但是里面似乎有个错误,例子本意是区域外的值保持不变,而选定区域的值加一个随机值,但是实际情况是两个行列不相等的矩阵相加,会报错,如果我有看错,请大家告诉我. 函数调用和参数输入: 然后是函数的编写: R中不同长高的矩阵是不能相加的,即使1X1,不会出现向量补齐的情况,下面举个极端的例子: > a<-matrix(1,1,1)> b<-matrix(1:2,2,1)> a [,1][1,] 1> b [,…
R语言实现分层抽样(Stratified Sampling)以iris数据集为例 1.观察数据集 head(iris) Sampling)以iris数据集为例">  选取数据集中前6个数据,我们可以看出iris数据集一共有5个字段. dim(iris) Sampling)以iris数据集为例">  iris数据集一共有150条数据,5个字段 summary(iris) Sampling)以iris数据集为例">  观察各个变量的内容,可以看出前四个变量(Se…
R语言函数化编程笔记2 我学过很多的编程语言,可以我写的代码很啰嗦,一定是我太懒了.或许是基础不牢地动山摇 1.为什么要学函数 函数可以简化编程语言,减少重复代码或者说面向对象的作用 2.函数 2.1创建函数 例如创建一个简单的求和函数 su<-function(x,y){ x+y } 2.2 调用函数 su(2,3) ##5 简单的调用函数 函数名(参数赋值) 2.3 泛化函数 就是使编写的一个函数更加通用 可以处理各种运算 calc<-function(x,y,type){ if (typ…