实验程序视频 下载 1 问题描述 高密度环境下的行人统计一直没有得到很好的解决,主要原因是对高密度人群中的行人检测和跟踪是一个很难的问题,如下图所示环境,存在的困难包括: 检测方面: 由于人群整体处于运动状态,占据了背景的60%以上的面积,导致许多目标检测的方法,如基于背景差的运动目标检测.分割方法难以奏效.另外,由于人群存在大量遮挡,导致基于行人轮廓的检测方法,如HOG也难以奏效. 跟踪方面: 高密度环境中的多目标跟踪,由于存在大量的遮挡.合并.分离,实现准确的跟踪是一个富有挑战性的研究问题.…
1.为什么MQ能解决高并发环境下的消息堆积问题? MQ消息如果堆积,消费者不会立马消费所有的消息,不具有实时性,所以可以解决高并发的问题. 性能比较好的消息中间件:Kafka.RabbitMQ,RocketMQ. 2.什么情况下会产生消息丢失的现象? 消息队列满了的情况下. 3.如何解决消息丢失的问题? (1)生产者可以采用重试机制.因为消费者会不停的消费消息,可以重试将消息放入队列. 如果还是不行,可以将消息记录到数据库,后期做补偿.(不太推荐,不方便) (2)死信队列,可以理解为备胎.(推荐…
原文:http://blog.csdn.net/heyewu4107/article/details/71009712 高并发场景系列(一) 利用redis实现分布式事务锁,解决高并发环境下减库存 问题描述:某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 方案一 利用数据库锁机制,对记录进行锁定,再进行操作 SELECT * from goods where ID =1 for update; UPDATE goods set stock…
利用redis实现分布式事务锁,解决高并发环境下库存扣减   问题描述: 某电商平台,首发一款新品手机,每人限购2台,预计会有10W的并发,在该情况下,如果扣减库存,保证不会超卖 解决方案一 利用数据库锁机制,对记录进行锁定,再进行操作 select * from goods where id =1 for update ; update goods set count = count - 1 where id= 1; 利用排它锁将并行转化为串行操作,但该方案的性能和用户体验较差 解决方案二 利…
写在前面 Tomcat作为最常用的Java Web服务器,随着并发量越来越高,Tomcat的性能会急剧下降,那有没有什么方法来优化Tomcat在高并发环境下的性能呢? Tomcat运行模式 Tomcat的运行模式有3种. 1.bio模式 默认的模式,性能非常低下,没有经过任何优化处理和支持. 2.nio模式 利用java的异步io护理技术,noblocking IO技术.要想运行在该模式下,则直接修改server.xml里的Connector节点,修改protocol为如下配置. protoco…
写在前面 周末,跟阿里的一个朋友(去年晋升为P9了)聊了很久,聊的内容几乎全是技术,当然了,两个技术男聊得最多的话题当然就是技术了.从基础到架构,从算法到AI,无所不谈.中间又穿插着不少天马行空的想象,虽然现在看起来不太实际,但是随着技术的进步,相信五年.十年之后都会实现的. 不知道是谁提起了在高并发环境下如何构建缓存服务,结果一路停不下来了!! 缓存特征 (1)命中率:命中数/(命中数+没有命中数) (2)最大元素(空间):代表缓存中可以存放的最大元素的数量,一旦缓存中元素的数量超过这个值,或…
写在前面 随着系统并发量越来越高,Tomcat所占用的内存就会越来越大,如果对Tomcat的内存管理不当,则可能会引发Tomcat内存溢出的问题,那么,如何防止Tomcat内存溢出呢?我们今天就来一起探讨下这个问题. 防止Tomcat内存溢出可以总结为两个方案:一个是设置Tomcat启动的初始内存,一个是防止Tomcat所用的JVM内存溢出.接下来,我们就分别对这两种方案作出简单的介绍. 设置启动初始内存 其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)是物理内存的1/4.可以…
原文:http://tlzl0526-gmail-com.iteye.com/blog/2378853 在一些高并发的场景中,比如秒杀,抢票,抢购这些场景,都存在对核心资源,商品库存的争夺,控制不好,库存数量可能被减少到负数,出现超卖的情况,或者 产生唯一的一个递增ID,由于web应用部署在多个机器上,简单的同步加锁是无法实现的,给数据库加锁的话,对于高并发,1000/s的并发,数据库可能由行锁变成表锁,性能下降会厉害.那相对而言,redis的分布式锁,相对而言,是个很好的选择,redis官方推…
一个在线2k的游戏,每秒钟并发都吓死人.传统的hibernate直接插库基本上是不可行的.我就一步步推导出一个无锁的数据库操作. 1. 并发中如何无锁. 一个很简单的思路,把并发转化成为单线程.Java的Disruptor就是一个很好的例子.如果用java的concurrentCollection类去做,原理就是启动一个线程,跑一个Queue,并发的时候,任务压入Queue,线程轮训读取这个Queue,然后一个个顺序执行. 在这个设计模式下,任何并发都会变成了单线程操作,而且速度非常快.现在的n…
解决方案: 基于Redis的全局id生成策略:(推荐此方法) 基于雪花算法的全局id生成: https://www.cnblogs.com/kobe-qi/p/8761690.html 基于zookeeper的全局id生成: https://www.iyunv.com/thread-660410-1-1.html…
前言 本篇文章出自CVPR2017,四名作者为Tsinghua University,Peking University, 外加两名来自Megvii(旷视科技)的大佬. 文章中对能够帮助行人检测的extra features做了诸多分析,并且提出了HyperLearner行人检测框架(基于Faster R-CNN改进),在KITTI&Caltech&Cityscapes数据集上实现了极为优秀的性能. 论文:http://openaccess.thecvf.com/content_cvpr_…
本文转载自:http://blog.xeonxu.info/blog/2012/12/04/zai-gao-tong-ping-tai-androidhuan-jing-xia-bian-yi-nei-he-mo-kuai/ 高通Android环境中Linux内核会作为Android的一部分进行编译,直接使用make即可一次性从头编到尾.而有的平台比如Marvell,内核的编译操作相对比较独立,必须使用标准的内核编译命令进行单独编译.一般来说,用高通的这种方式比较傻瓜化,一步到底的感觉:而用Ma…
原地址:http://blog.csdn.net/van_ruin/article/details/9166591 .方向梯度直方图(Histogramof Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.基本知识可以参考博客:http://blog.csdn.net/zouxy09/article/details/7929348 .Adaboost的基础知识可以参考书籍:统计学…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog源码分析 开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCreator2.5. 实验功能: 单击Open Image按钮,选择需要进行人检测的一张图片,确定后自动显示出来.该图片…
HOG SVM 车辆检测 近期需要对卡口车辆的车脸进行检测,首先选用一个常规的检测方法即是hog特征与SVM,Hog特征是由dalal在2005年提出的用于道路中行人检测的方法,并且取的了不错的识别效果.在人脸检测方面目前主流的方法,先不考虑复杂的深度学习,大多采用Haar和Adaboost的手段来实现.我接下来将会用着两种方法来实现对卡口的车辆检测. 首先引出 Hog特征,Hog特征是梯度方向直方图,是一种底层的视觉特征,主要描述的是图像中的梯度分布情况,而梯度分布信息主要是集中在图像中不同内…
这是行人检测相关资源的第二部分:源码和数据集.考虑到实际应用的实时性要求,源码主要是C/C++的.源码和数据集的网址,经过测试都可访问,并注明了这些网址最后更新的日期,供学习和研究进行参考.(欢迎补充更多的资源) 1        Source Code 1.1    INRIA Object Detection and Localization Toolkit http://pascal.inrialpes.fr/soft/olt/ Dalal于2005年提出了基于HOG特征的行人检测方法,行…
行人检测具有极其广泛的应用:智能辅助驾驶,智能监控,行人分析以及智能机器人等领域.从2005年以来行人检测进入了一个快速的发展阶段,但是也存在很多问题还有待解决,主要还是在性能和速度方面还不能达到一个权衡.近年,以谷歌为首的自动驾驶技术的研发正如火如荼的进行,这也迫切需要能对行人进行快速有效的检测,以保证自动驾驶期间对行人的安全不会产生威胁. 1   行人检测的现状 大概可以分为两类 1.1    基于背景建模 利用背景建模方法,提取出前景运动的目标,在目标区域内进行特征提取,然后利用分类器进行…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
一.论文 综述类的文章 [1]P.Dollar, C. Wojek,B. Schiele, et al. Pedestrian detection: an evaluation of the state of the art [J].IEEE Transactions on PatternAnalysis andMachine Intelligence, 2012, 34(4): 743-761. [2]M. Enzweiler, and D.Gavrila. Monocular pedestr…
CVPR 2019 行人检测新思路:高级语义特征检测取得精度新突破 原创: CV君 我爱计算机视觉 今天 点击我爱计算机视觉置顶或标星,更快获取CVML新技术 今天跟大家分享一篇昨天新出的CVPR 2019论文<High-level Semantic Feature Detection:A New Perspective for Pedestrian Detection>,作者将行人检测问题转化为高级语义特征检测的问题,刷新了行人检测精度的新高度!而且作者称代码将开源. 论文作者信息: 作者分…
之前运行haar特征的adaboost算法人脸检测一直出错,加上今天的HOG&SVM行人检测程序,一直报错. 今天总算发现自己犯了多么白痴的错误——是因为外部依赖项lib文件没有添加完整,想一头囊死啊 做程序一定要心如止水!!! 仔细查找!!! 1.人脸识别程序: #include "cv.h" #include "highgui.h" #include <stdio.h> #include <stdlib.h> #include &…
从TP.FP.TN.FN到ROC曲线.miss rate.行人检测评估 想要在行人检测的evaluation阶段要计算miss rate,就要从True Positive Rate讲起:miss rate = 1 - true positive rate true positive rate毕竟是一个rate,是一个比值.是谁和谁比呢?P 要从TP.FP.TN.FN讲起. 考虑一个二分类问题:一个item,它实际值有0.1两种取值,即负例.正例:而二分类算法预测出来的结果,也只有0.1两种取值,…
本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于opencv中hog的源码分析,可以参考本人的另一篇博客:opencv源码解析之(6):hog源码分析 开发环境:opencv2.4.2+Qt4.8.2+ubuntu12.04+QtCreator2.5. 实验功能: 单击Open Image按钮,选择需要进行人检测的一张图片,确定后自动显示出来.该图片…
首先我们知道Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主,那么PCL中也是利用这一思想来进行行人的检测, 总体思路: 1.提取正负样本hog特征 2.投入svm分类器训练,得到model 3.由model生成检测子 4.利用检测子检测负样本,得到hardexample 5.提取hardexamp…
目前基于机器学习方法的行人检测的主流特征描述子之一是HOG(Histogram of Oriented Gradient, 方向梯度直方图).HOG特征是用于目标检测的特征描述子,它通过计算和统计图像局部区域的梯度方向直方图来构成特征,用这些特征描述原始图像. HOG的核心思想是所检测的局部物体外形能够被光强梯度或边缘方向的分布所描述.通过将整幅图像分割成小的连接区域(称为cells),每个cell生成一个方向梯度直方图或者cell中pixel的边缘方向,这些直方图的组合可表示出(所检测目标的目…
行人检测与重识别!SOTA算法 A Simple Baseline for Multi-Object Tracking, Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, Wenyu Liu, 论文地址:https://arxiv.org/pdf/2004.01888.pdf GitHub 地址:https://github.com/ifzhang/FairMOT Installation 克隆这个repo,调用克隆的目录${FAIRMOT…
最近弄了个wcf的监控服务,偶尔监控到目标服务会报一个目标积极拒绝的错误.一开始以为服务停止了,上服务器检查目标服务好好的活着.于是开始查原因. 一般来说目标积极拒绝(TCP 10061)的异常主要是2种可能: 1:服务器关机或者服务关闭 2:Client调用的端口错误或者服务器防火墙没开相应的端口 但是我们的服务本身是可以调用的,只是偶尔报这个错误,说明并不是这2个问题造成的.继续google,在stackoverflow上看到这样一篇:传送门 If this happens always,…
http://www.cnblogs.com/kklldog/p/5037006.html wcf的监控服务,偶尔监控到目标服务会报一个目标积极拒绝的错误.一开始以为服务停止了,上服务器检查目标服务好好的活着.于是开始查原因. 一般来说目标积极拒绝(TCP 10061)的异常主要是2种可能: 1:服务器关机或者服务关闭 2:Client调用的端口错误或者服务器防火墙没开相应的端口 但是我们的服务本身是可以调用的,只是偶尔报这个错误,说明并不是这2个问题造成的.继续google,在stackove…
参考了博客http://blog.csdn.net/carson2005/article/details/7841443 后,自己动手后发现了一些问题,博客里提到的一些问题没有解决 ,是关于为什么图像的HOG特征向量debug后是15876的问题.答案是因为原作者的窗口是64*64的,所以维数为9*4*7*7=1764(图像的大小也是64*64,所以图像的特征维数与一个窗口的维数是相同的,compute()里的窗口步进(8,8)也是无效的).而我的图像时64*128大小的,我把窗口也换成 64*…