使用python3 学习了线性回归的api 分别使用逻辑斯蒂回归  和   随机参数估计回归 对良恶性肿瘤进行预测 我把数据集下载到了本地,可以来我的git下载源代码和数据集:https://github.com/linyi0604/MachineLearning import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.preprocessi…
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model i…
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors…
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https://github.com/linyi0604/MachineLearning import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.feature_extraction impor…
常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(classmates) - 1 classmates[-1] classmates[-2] classmates.append('Adam') classmates.insert(1, 'Jack') classmates.pop() classmates.pop(1) s = ['python', 'j…
python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import load_boston from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.tree import DecisionTr…
[Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第二列是在这个城市开店所带来的利润数. 现在,求最合适的θ0和θ1,利用Normal Equation 即正规方程式 计算方法: θ = (XT * X)-1 * XT * Y 所以写出函数 def normalEquation(X,Y): re…
[Python]机器学习之单变量线性回归 利用批量梯度下降找到合适的参数值 本题目来自吴恩达机器学习视频. 题目: 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同的城市人口数和该城市带来的利润.第一列是城市的人口数,第二列是在这个城市开店所带来的利润数. 现在,假设一开始θ0和θ1都是0,利用梯度下降的方法,找到合适的θ值,其中学习速率α=0.01,迭代轮次为1000轮 上一个文章里,我们得出了CostFunction,即损失函数. 现在我们需…
http://blog.csdn.net/zouxy09/article/details/20319673 机器学习算法与Python实践之(七)逻辑回归(Logistic Regression) zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样…
机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大多数开发者只需要直接调用api就能使用.但是在实际业务中,面对不同的数据集,必须了解算法的原理,实现以及懂得对结果进行分析,才能达到高准确率. cherry分类器 关键字过滤 贝叶斯模型 数学推导 贝叶斯模型实现 测试 统计分析 总结 cherry分类器 基础术语: cherry分类器默认支持中英文…
转自:http://mp.weixin.qq.com/s?__biz=MzA4MjEyNTA5Mw==&mid=2652565022&idx=1&sn=9aa035097120406a669a1e5570173ef5&chksm=8464c654b3134f42edfeccdcc2d33fe0065d51982c4bd4dda5da0a54089096a69de67e5ec2dc&mpshare=1&scene=1&srcid=0404KF6lY48…
[机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 使用一个简单的数据集来模拟,只有几条数据. 代码 从数据集中读取X和y. 为X添加二次方项,用Z替换. 给Z添加 1 列,初始化为 1 ,用来求偏置项. 划分训练集和测试集. 将Z和y的训练集转换为矩阵形式. 和线性回归类似,使用正规方程法,先验证矩阵的可逆性. 去掉Z中全为1的列. 使…
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念,经过一番苦思冥想后终于有了我自己的理解. 0. 正则化(Regularization ) 前面使用多项式回归,如果多项式最高次项比较大,模型就容易出现过拟合.正则化是一种常见的防止过拟合的方法,一般原理是在代价函数后面加上一个对参数的约束项,…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…
背景 学习 Linear Regression in Python – Real Python,对线性回归理论上的理解做个回顾,文章是前天读完,今天凭着记忆和理解写一遍,再回温更正. 线性回归(Linear Regression) 刚好今天听大妈讲机器学习,各种复杂高大上的算法,其背后都是在求"拟合". 线性回归估计是最简单的拟合了.也是基础中的基础. 依然是从字面上先来试着拆解和组合: 首先,Regression 回归,指的是研究变量之间的关系,这个由来在Python 线性回归(Li…
一.理论基础 1.回归公式 对于单元的线性回归,我们有:f(x) = kx + b 的方程(k代表权重,b代表截距). 对于多元线性回归,我们有: 或者为了简化,干脆将b视为k0·x0,,其中k0为1,于是我们就有: 2.损失函数 3.误差衡量 MSE,RMSE,MAE越接近于0越好,R方越接近于1越好. MSE平均平方误差(mean squared error) RMSE,是MSE的开根号 MAE平均绝对值误差(mean absolute error) R方 其中y_hat是预测值. 二.代码…
机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是对支持…
机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 机器学习中有两类的大问题,一个是分类,一个是聚类.分类是根据一些给定的已知类别标号的样本,训练某种学习机器,使它能够对未知类别的样本进行分类.这属于supervised learning(监督学习).而聚类指事先并不知道任何样本的类别标号,…
自学Python之路-Python核心编程 自学Python之路[第六回]:Python模块       6.1 自学Python6.1-模块简介    6.2 自学Python6.2-类.模块.包    6.3 自学Python6.3-内置模块(1)    6.4 自学Python6.4-内置模块(2)…
自学Python之路-Python基础+模块+面向对象+函数 自学Python之路[第一回]:初识Python    1.1 自学Python1.1-简介    1.2 自学Python1.2-环境的搭建:Pycharm及python安装详细教程    1.3 自学Python1.3-centos内python3并与python2共存    1.4 自学Python1.4-Centos内vim中文乱码问题    1.5 自学Python1.5-Centos内python2识别中文    1.6 …
自学Python之路-Python并发编程+数据库+前端 自学Python之路[第一回]:1.11.2 1.3…
自学Python之路-Python网络编程 自学Python之路[第一回]:1.11.2 1.3…
http://blog.csdn.net/zouxy09/article/details/17590137 机器学习算法与Python实践之(六)二分k均值聚类 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来…
Python之路Python文件操作 一.文件的操作 文件句柄 = open('文件路径+文件名', '模式') 例子 f = open("test.txt","r",encoding = “utf-8”) 分析:这里由于python文件和test.txt文件在同一文件夹里,不需要写test的绝对路径 如果要写绝对路径可以这样写 f = open(file = "d:/python/test.txt","r",encoding…
Python之路Python内置函数.zip().max().min() 一.python内置函数 abs() 求绝对值 例子 print(abs(-2)) all() 把序列中每一个元素做布尔运算,如果全部都是true,就返回true, 但是如果是空字符串.空列表也返回true 例子 ',''])) 输出结果 False 例子2 print(all('')) 输出结果 True any() 把序列中每一个元素做布尔运算,如果有一个为true就返回true, 但是有两个false还是false…
Python之路Python作用域.匿名函数.函数式编程.map函数.filter函数.reduce函数 一.作用域 return 可以返回任意值例子 def test1(): print("test1") def test(): print("test") return test1 res = test() print(res) 输出结果 test <function test1 at 0x021F5C90> 分析:这里print(res)输出的是te…
Python之路Python全局变量与局部变量.函数多层嵌套.函数递归 一.局部变量与全局变量 1.在子程序中定义的变量称为局部变量,在程序的一开始定义的变量称为全局变量.全局变量作用域是整个程序,局部变量作用域是定义该变量的子程序. 全局变量没有任何缩进,在任何位置都可以调用. 子程序:如用def定义的函数. 作用域 一个标识符的可见范围,这就是标识符的作用域.一般常说的是变量的作用域 全局作用域(global):在整个程序运行环境中都可见 局部作用域:在函数.类等内部可见:局部变量使用范围不…
大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习.但是,实际情况往往d是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中.就像你的脑海中已经有了一块块"拼图"(机器学习技术),你却不知道如何讲他们拼起来应用在实际的项目中.如果你也遇见过同样的问题,那么这篇文章应该是你想要的.本系列文章将介绍一个针对真实世界实际数据集的完整机器学习解决方案,让你了解所有部分如何结合在一起. 本系列文章按照一般机器学习工作流程逐步进行: 数据清洗与格式处理 探索性数据…