大数据小视角1:从行存储到RCFile】的更多相关文章

前段时间一直在忙碌写毕设与项目的事情,很久没有写一些学习心得与工作记录了,开了一个新的坑,希望能继续坚持写作与记录分布式存储相关的知识.为什么叫小视角呢?因为属于随想型的内容,可能一个由小的视角来审视海量数据的存储与计算技术,把知识点分为两到三章来梳理.管中窥豹,可见一斑,希望能利用这个过程提高自己,也欢迎阅读的朋友多指正. 第一章先从Facebook的一篇论文<RCFile: A Fast and Space-efficient Data Placement Structure in MapR…
上一篇文章聊了聊基于PAX的混合存储结构的RCFile,其实这里笔者还了解一些八卦,RCfile的主力团队都是来自中科院的童鞋在Facebook完成的,算是一个由华人主导的编码项目.但是RCfile仍然存在一些缺陷,后续被HortonWorks盯上之后上马了ORCFile格式,而老对头Cloudera则紧抱Google大腿推出了Parquet格式. 其实二者需要解决的问题是殊途同归的,但是不同的爹似乎导致了不太相同的命运.这篇文章,我们主要还是聊聊两者的技术细节,再穿插一些开源圈的商业八卦~~~…
这个系列文章之前因为私事荒废了很久,继续更新--之前与老大谈论架构时,老大和我聊了聊分布式数据处理之中的Lambda结构,之前在<Designing Data-Intensive Applications>这本书之中,作者 Martin Kleppmann也在文中涉及到了通过重型批处理与灵活的流处理相结合的方式来构建分布式计算系统.所以这次也是借这个机会重新梳理Lambda架构与后续由Jay Kreps提出改进的Kappa架构,结合个人对于数据系统的思考,展开聊一聊分布式计算系统的一些设计思路…
笔者目前开发运维的存储系统的服务器都跑在SSD之上,目前单机服务器最大的SSD容量有4T之多.(公司好有钱,以前在实验室都只有机械硬盘用的~~)但SSD本身的特性与机械硬盘差距较大,虽然说在性能上有诸多优势,但是如果使用的方式方法不对,反而会事倍功半.所以笔者花时间调研了一下固态硬盘的结构与特性,并且总结了一些避免SSD写放大性能下降的法则,希望对大家有所帮助~~ 1.SSD的写放大 首先我们来看看什么是写放大,写放大(Write amplification)是2008年,由英特尔和Silico…
连续两篇文章都聊了不同的存储格式,这篇我们继续深入来看看在存储格式的演变之上有什么新的"黑科技".华为公司在2016年开源了类parquet的列存格式:CarbonData,并且贡献给了Apache社区.CarbonData仅仅用了不到一年的时间就成功毕业,成为了Apache社区的顶级项目,CarbonData是首个由华人公司主导的Apache顶级项目,(来源自eBay的Kylin算是首个由华人主导的顶级开源项目)笔者这里还是要向华为的小伙伴们致敬,能够完成这样一个从0到1的突破. 本…
Hive是一个数据仓库基础工具在Hadoop中用来处理结构化数据.它架构在Hadoop之上,总归为大数据,并使得查询和分析方便.并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行. 术语“大数据”是大型数据集,其中包括体积庞大,高速,以及各种由与日俱增的数据的集合.使用传统的数据管理系统,它是难以加工大型数据.因此,Apache软件基金会推出了一款名为Hadoop的解决大数据管理和处理难题的框架. 安装mysql http://www.centoscn.com/my…
一.Hive CLI 1.1 Help 使用 hive -H 或者 hive --help 命令可以查看所有命令的帮助,显示如下: usage: hive -d,--define <key=value> Variable subsitution to apply to hive commands. e.g. -d A=B or --define A=B --定义用户自定义变量 --database <databasename> Specify the database to use…
编程规范 (1)用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端) (2)Mapper的输入数据是KV对的形式(KV的类型可自定义) (3)Mapper的输出数据是KV对的形式(KV的类型可自定义) (4)Mapper中的业务逻辑写在map()方法中 (5)map()方法(maptask进程)对每一个<K,V>调用一次 (6)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV (7)Reducer的业务逻辑写在reduce()方…
我们都知道现在大数据存储用的基本都是 Hdfs ,但在 Hadoop 诞生之前,我们都是如何存储大量数据的呢?这次我们不聊技术架构什么的,而是从技术演化的角度来看看 Hadoop Hdfs. 我们先来思考两个问题. 在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 的呢? 为什么会有 Hadoop Hdfs 出现呢?在 Hdfs 出现以前,计算机是通过什么手段来存储“大数据” 要知道,存储大量数据有三个最重要的指标,那就是速度,容量,容错性.速度和容量的重要性毋庸置疑,如果容量不够大…
在HDInsight中从Hadoop的兼容BLOB存储查询大数据的分析 低成本的Blob存储是一个强大的.通用的Hadoop兼容Azure存储解决方式无缝集成HDInsight.通过Hadoop分布式文件系统(HDFS)接口,完整的组件集合在HDInsight能够 在Blob存储数据的直接操作.在本教程中,学习怎样建立一个容器的Blob存储,然后在里面处理的数据. 在BLOB存储中存储的数据能够用于计算的HDInsight集群被安全地删除,而不会丢失用户数据. 注意: 该ASV://语法中不支持…
切入正题前,先做个自我介绍. 本人是从业三年的大数据小码农一枚,在帝都一家有点名气的广告公司工作,同时兼着大数据管理员的职责. 平时主要的工作是配合业务部门,做各种广告大数据计算分析工作,然后制成各种图表,提供给领导和客户,做为他们业务决策的辅助依据. 因为敏感性和安全的原因,我们的广告数据都是保存在公司自己的服务器里,而不是云上,并且做了各种隔离,防止有人盗取.大数据平台用的是目前流行的OpenStack + Hadoop谱系组合. 这套软件组合虽然时不时给我出点难题,但是好在部门里还有两位技…
摘要:距离上一次MaxCompute新功能的线上发布已经过去了大约一个季度的时间,而在这一段时间里,MaxCompute不断地在增加新的功能和特性,比如参数化视图.UDF支持动态参数.支持分区裁剪.生成建表DDL语句功能等功能都已经得到了广大开发者的广泛使用.那么,近期MaxCompute究竟还有哪些新特性呢?本文就为大家揭晓答案. 以下内容根据视频及PPT整理而成. MaxCompute与阿里云大数据产品解决方案 在介绍MaxCompute新功能前,我们先快速对阿里云的大数据产品解决方案进行介…
hadoop 理论基础:GFS----HDFS:MapReduce---MapReduce:BigTable----HBase 项目网址:http://hadoop.apache.org/ 下载路径:https://archive.apache.org/dist/hadoop/common/ 主要模块 Hadoop Common 基础型模块.包括 RPC调用,Socket通信... Hadoop Distributed File System hdfs 分布式文件系统,存储数据 Hadoop Y…
ylbtech-杂项:大数据 (巨量数据集合(IT行业术语)) 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉.管理和处理的数据集合,是需要新处理模式才能具有更强的决策力.洞察发现力和流程优化能力的海量.高增长率和多样化的信息资产.  在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的<大数据时代> 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理.大数据的5V特点(IBM提出):Volume(大量).Velocity(高速).Variety(多样…
作者 Jonathan Allen ,译者 张晓鹏 Splunk的用户大会已经接近尾声.三天时间的会议里,共进行了160多个主题研讨.涵盖了从安全.运营到商业智能.甚至包含物联网,会议中一遍又一遍出现同样的中心主题:大数据的关键是机器学习. 存储不再是一个问题. 从执行Hadoop兼容节点的专用存储硬件.到数百台使用普通硬盘的计算机组成的集群,毫无疑问,我们具备了处理这类存储问题的能力.还有一方面,像Splunk这种分析和可视化工具也应运而生.假设你知道你要找什么,这些工具能够非常快给你所须要的…
随着网络性能提升,云端计算架构逐步向存算分离转变,AWS Aurora 率先在数据库领域实现了这个转变,大数据计算领域也迅速朝此方向演化. 存算分离在云端有明显优势,不但可以充分发挥弹性计算的灵活,同时集中的托管存储可以提供更大的容量和更低的成本,避免了云端大量自建存储集群的维护代价. 一.问题和挑战 对象存储是广泛使用的云端非结构化数据存储解决方案,越来越多的非结构化数据聚集于对象存储的数据湖中,随之而来的是对这些海量数据的分析需求. 然而对大数据分析的存储系统来说,HDFS 接口是事实标准,…
Hive出现的背景 Hadoop提供了大数据的通用解决方案,比如存储提供了Hdfs,计算提供了MapReduce思想.但是想要写出MapReduce算法还是比较繁琐的,对于开发者来说,需要了解底层的hadoop api.如果不是开发者想要使用mapreduce就会很困难.... 另一方面,大部分的开发者都有使用SQL的经验.SQL成为开发者必备的技能... 那么可以不可以使用SQL来完成MapReduce的过程呢?-- 答案就是,Hive Hive能够解决的问题 Hive可以帮助开发者从现有的数…
——把数据从分散统一集中到数据中心 基于HP分布式并行计算/存储技术构建的云监控系统即是通过“云高清摄像机”及IaaS和PaaS监控系统平台,根据用户所需(SaaS)将多路监控数据流传送给“云端”,除了提供传统的监控服务外,还提供了对PB级大数据的高性能IO并发集中存储.查询和分析等数据应用服务,从而可以实现更高的非结构化数据管理,解决了监控系统中对于大数据安全.分析和备份等问题,用户也可以通过任意方式,任意终端按需实现对视频监控的需要. 数据驱动手段在一定程度上帮助了监管部门提高了工作效率.传…
http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便对大数据技术(如Hadoop等,主要指MapReduce与NoSQL)与数据库一体机(新一代的主流关系数据库)技术对比如下: 硬件架构 从本质上来讲,两者的硬件架构基本相同,都是采用x86服务器集群的分布式并行模式来应对大规模的数据与计算.但是,数据库一体机的商家大都会对硬件体系进行面向产品化的.系…
胖子哥(1106110976) 9:35:36 http://www.cnblogs.com/hadoopdev/p/3531963.htmlnosqlt数据库-肖(380594863) 9:38:05 理论啊,没啥干货. 10:49:04彼岸蔷薇加入本群nosqlt数据库-肖(380594863) 10:51:11 寂静的群啊 厂商联盟李光伟(7854251) 10:51:45 厂商联盟_Michelle(2085867176) 10:52:13 nosqlt数据库-肖(380594863) …
我接触过的大数据有: 1.美国棱镜计划 2.前几天新闻报道的,苹果公司窃取用户隐私 3.百度的用户搜素习惯统计分析 4.淘宝的用户购物习惯分析,智能推荐宝贝 5.浏览器的智能标签页 ... 最想了解的大数据架构与算法: 1.著名的Google   网页排名算法:PageRank 2.著名的聚类算法:K-Means 7.CART 3.C4.5 4.k-Means 5.SVM 6.Apriori ... 大数据应用的未来挑战和趋势是: 最大的挑战并非技术和数据本身,而在与人们对于数据的认识和态度.这…
锁粒度与并发性能怎么样? 数据库的读写并发性能与锁的粒度息息相关,不管是读操作还是写操作开始运行时,都会请求相应的锁资源,如果请求不到,操作就会被阻塞.读操作请求的是读锁,能够与其它读操作共享,但是当写操作请求数据库时,它所申请的是写锁,具有排它性. MongoDB在2.2之前的版本,锁的粒度是非常粗的,它会锁住整个mongod实例.这意味着当一个数据库上的写锁被请求后,对mongod实例上管理的其它数据库的操作都会被阻塞.2.2版本降低了锁的粒度,引入了单个数据库范围的锁,也就是说读写操作的锁…
在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据量的问题,但优化毕竟不是一个长期方案,所以人们提出了一种新的数据库解决方案来迎接大数据时代的到来——NoSQL(非关系型数据库). 为什…
1.开机启动Hadoop,输入命令:  检查相关进程的启动情况: 2.对Hadoop集群做一个测试:   可以看到新建的test1.txt和test2.txt已经成功地拷贝到节点上(伪分布式只有一个节点,如果是完全分布式,则会显示3个节点都拷贝成功).这证明HDFS工作正常,其中,hadoop dfs –put [本地地址] [hadoop目录] 代表将本地的地址目录存放到hadoop目录下:hadoop dfs –ls [文件目录] 则表示查看指定目录下的内容.更多Hadoop的常用指令请参考…
Memcached存储单个item最大数据是在1MB内,假设数据超过1M,存取set和get是都是返回false,并且引起性能的问题. 我们之前对排行榜的数据进行缓存,因为排行榜在我们全部sql select查询里面占了30%,并且我们排行榜每小时更新一次,所以必须对数据做缓存.为了清除缓存方便,把全部的用户的数据放在同一key中,因为memcached:set的时候没有压缩数据.在測试服測试的时候,没发现问题,当上线的时候,结果发现,在线人数刚刚490人的时候,serverload avera…
原文地址:http://www.cnblogs.com/mokafamily/p/4076954.html 爆炸式发展的NoSQL技术 在过去的很长一段时间中,关系型数据库(Relational Database Management System)一直是最主流的数据库解决方案,他运用真实世界中事物与关系来解释数据库中抽象的数据架构.然而,在信息技术爆炸式发展的今天,大数据已经成为了继云计算,物联网后新的技术革命,关系型数据库在处理大数据量时已经开始吃力,开发者只能通过不断地优化数据库来解决数据…
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩编码8.2.2 压缩参数配置8.3 开启Map输出阶段压缩8.4 开启Reduce输出阶段压缩8.5 文件存储格式8.5.1 列式存储和行式存储8.5.2 TextFile格式8.5.3 Orc格式8.5.4 Parquet格式8.5.5 主流文件存储格式对比实验8.6 存储和压缩结合8.6.1 修…
php特级课---2.网站大数据如何存储 一.总结 一句话总结: mysql主从,分库分表,mysql分区,mysql集群,Nosql 1.mysql主从服务器各自的功能是什么? 增删改,主服务器 查询,备份,从服务器 2.mysql能够负担得起几亿用户的访问么? 可以的,优化做好就好,比如淘宝,主从服务器,分库分表,数据库的负载均衡 3.mysql分库分表是怎么弄? 垂直分表,大表分成小表,每个小表几个字段或者几十个字段 水平分表,行数太多了,可以分成多个表 4.mysql数据库过度分库分表的…
Memcached存储单个item最大数据是在1MB内,如果数据超过1M,存取set和get是都是返回false,而且引起性能的问题. 我们之前对排行榜的数据进行缓存,由于排行榜在我们所有sql select查询里面占了30%,而且我们排行榜每小时更新一次,所以必须对数据做缓存.为了清除缓存方便,把所有的用户的数据放在同一key中,由于memcached:set的时候没有压缩数据.在测试服测试的时候,没发现问题,当上线的时候,结果发现,在线人数刚刚490人的时候,服务器load average飘…
由于疫情原因在家办公,导致很长一段时间没有更新内容,这次终于带来一篇干货,是一篇关于 Hbase架构原理 的分享. Hbase 作为实时存储框架在大数据业务下承担着举足轻重的地位,可以说目前绝大多数大数据场景都离不开Hbase. 今天就先从 Hbase 基础入手,来说说 Hbase 经常用到却容易疏忽的基础知识. 本文主要结构总结如下: Hbase 主从架构 Hbase 安装依靠 Hadoop 与 Zookeeper,网上有很多安装教程,安装比较简单,这里我们就着重看下 Habse 架构,如图:…