Spark机器学习示例】的更多相关文章

1. Java代码 /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this fil…
Spark机器学习 1 在线学习 模型随着接收的新消息,不断更新自己:而不是像离线训练一次次重新训练. 2 Spark Streaming 离散化流(DStream) 输入源:Akka actors.消息队列.Flume.Kafka.-- http://spark.apache.org/docs/latest/streaming-programming-guide.html 类群(lineage):应用到RDD上的转换算子和执行算子的集合 3 MLib+Streaming应用 3.0 build…
Spark机器学习 Day2 快速理解机器学习 有两个问题: 机器学习到底是什么. 大数据机器学习到底是什么. 机器学习到底是什么 人正常思维的过程是根据历史经验得出一定的规律,然后在当前情况下根据这种规律来预测当前的情况下该怎么做,这种过程就是一个机器学习的过程. 我们可以发现,这个过程里有规律和当前的情况.规律就是模型,当前情况就是当前的数据,会根据当前的情况会根据不同的规律来得出不同的结论来驱动下一个行为,就是数据驱动的一种决策方式,这和我们编程用的指令驱动方式是完全不同的. 机器学习是根…
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源,在Spark的最底层肯定是RDD封装,这个和Spark具体是什么版本没有任何关系,版本发展只不过是提供了更多高层的API而已,例如DataFrame.Dataset等,而之所以有DataFrame.Dataset,一般情况下是为了使用统一的优化引擎(抽象程度越高,优化算法和空间越大). RDD有一…
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based API. 在学习了两周Spark MLlib后,准备转向DataFrame-based接口.由于现有的文档资料均是RDD-based接口,于是便去看了看Spark MLlib的源码.DataFrame-…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
2019-1-18 Spark 机器学习 机器学习 模MLib板 预测 //有视频 后续会补充 1547822490122.jpg 1547822525716.jpg 1547822330358.jpg 1547822508907.jpg // 加空行 图片才会居中显示 否则 靠左显示 --by 凡正(Iamfbz)…
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分析和统计分类:l   人工神经网络:l   决策树:l   高斯过程回归:l   线性判别分析:l   最近邻居法:l   感知器:l   径向基函数核:l   支持向量机:l   通过再生模型构造概率密度函数:l   最大期望算法:l   graphical model :包括贝叶斯网和 Markov 随机…
Spark机器学习 自然语言处理(NLP,Natural Language Processing) 提取特征 建模 机器学习 TF-IDF(词频 term frequency–逆向文件频率 inverse document frequency) 短语加权:根据词频,为单词赋予权值 特征哈希:使用哈希方程对特征赋予向量下标 0 运行环境 tar xfvz 20news-bydate.tar.gz export SPARK_HOME=/Users/erichan/Garden/spark-1.5.1…
PCA(主成分分析法,Principal Components Analysis) SVD(奇异值分解法,Singular Value Decomposition) http://vis-www.cs.umass.edu/lfw/lfw-a.tgz 0 运行环境 export SPARK_HOME=/Users/erichan/Garden/spark-1.5.1-bin-hadoop2.6 cd $SPARK_HOME bin/spark-shell --name my_mlib --pack…
K-均值(K-mean)聚类 目的:最小化所有类簇中的方差之和 类簇内方差和(WCSS,within cluster sum of squared errors) fuzzy K-means 层次聚类(hierarchical culstering) 凝聚聚类(agglomerative clustering) 分列式聚类(divisive clustering) 0 运行环境 cd $SPARK_HOME bin/spark-shell --name my_mlib --packages or…
分类模型的预测目标是:类别编号 回归模型的预测目标是:实数变量 回归模型种类 线性模型 最小二乘回归模型 应用L2正则化时--岭回归(ridge regression) 应用L1正则化时--LASSO(Least Absolute Shrinkage and Selection Operator) 决策树 不纯度度量方法:方差 0 准备数据 archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.z…
Spark机器学习 准备环境 jblashttps://gcc.gnu.org/wiki/GFortranBinaries#MacOS org.jblas:jblas:1.2.4-SNAPSHOT git clone https://github.com/mikiobraun/jblas.git cd jblas mvn install 运行环境 cd /Users/erichan/Garden/spark-1.5.1-bin-cdh4 bin/spark-shell --name my_mli…
线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Bayes) 决策树 0 准备数据 kaggle2.blob.core.windows.net/competitions-data/kaggle/3526/train.tsv sed 1d train.tsv > train_noheader.tsv 0 运行环境 cd /Users/erichan/G…
准备环境 anaconda nano ~/.zshrc export PATH=$PATH:/anaconda/bin source ~/.zshrc echo $HOME echo $PATH ipython conda update conda && conda update ipython ipython-notebook ipython-qtconsole conda install scipy PYTHONPATH export SPARK_HOME=/Users/erichan…
第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1-3 机器学习核心思想 1-4 机器学习的框架与选型.. 第2章 初识MLlib 本章中,将介绍Spark的机器学习库,对比Spark当前两种机器学习库(MLLib/ML)的区别,同时介绍Spark机器学习库的应用场景以及行业应用优势. 2-1 MLlib概述 2-2 MLlib的数据结构 2-3 M…
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distributed matrix,RowMatrix,IndexedRowMatrix,CoordinateMatrix,BlockMatrix. 前言:MLlib支持本地向量和存储在单机上的矩阵,当然也支持被存储为RDD的分布式矩阵.一个有监督的机器学习的例子在MLlib里面叫做标签点. 1. 本地向量 一…
Spark机器学习库中包含了两种实现方式,一种是spark.mllib,这种是基础的API,基于RDDs之上构建,另一种是spark.ml,这种是higher-level API,基于DataFrames之上构建,spark.ml使用起来比较方便和灵活. Spark机器学习中关于特征处理的API主要包含三个方面:特征提取.特征转换与特征选择.本文通过例子介绍和学习Spark.ml中提供的关于特征处理API中的特征选择(Feature Selectors)部分. 特征选择(Feature Sele…
Spark机器学习库中包含了两种实现方式,一种是spark.mllib,这种是基础的API,基于RDDs之上构建,另一种是spark.ml,这种是higher-level API,基于DataFrames之上构建,spark.ml使用起来比较方便和灵活. Spark机器学习中关于特征处理的API主要包含三个方面:特征提取.特征转换与特征选择.本文通过例子介绍和学习Spark.ml中提供的关于特征处理的API. 特征提取(Feature Extractors) 1.  TF-IDF (Hashin…
  一.概念 协同过滤算法主要分为基于用户的协同过滤算法和基于项目的协同过滤算法.   基于用户的协同过滤算法和基于项目的协同过滤算法 1.1.以用户为基础(User-based)的协同过滤 用相似统计的方法得到具有相似爱好或者兴趣的相邻用户,所以称之为以用户为基础(User-based)的协同过滤或基于邻居的协同过滤(Neighbor-based Collaborative Filtering). 具体步骤为: 1.收集用户信息收集可以代表用户兴趣的信息.一般的网站系统使用评分的方式或是给予评…
  一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳.综合而不是演绎.一种经常引用的英文定义是: A computer program is said to learn from exp…
作者:韩信子@ShowMeAI 大数据技术 ◉ 技能提升系列:https://www.showmeai.tech/tutorials/84 行业名企应用系列:https://www.showmeai.tech/tutorials/63 本文地址:https://www.showmeai.tech/article-detail/296 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 背景 Sparkify 是一个音乐流媒体平台,用户可以获取部分免费音乐资源,也…
流失预测是个重要的业务,通过预测哪些客户可能取消对服务的订阅来最大限度地减少客户流失.虽然最初在电信行业使用,但它已经成为银行,互联网服务提供商,保险公司和其他垂直行业的通用业务. 预测过程是大规模数据的驱动,并且经常结合使用先进的机器学习技术.在本篇文章中,我们将看到通常使用的哪些类型客户数据,对数据进行一些初步分析,并生成流失预测模型 - 所有这些都是通过Spark及其机器学习框架来完成的. 使用数据科学更好地理解和预测客户行为是一个迭代过程,其中涉及: 1.发现和模型创建: 分析历史数据.…
    MLlib支持存储在单个机器上的局部向量和矩阵,以及由一个或多个RDD支持的分布式矩阵. 局部向量和局部矩阵是用作公共接口的简单数据模型. 底层线性代数操作由Breeze提供. 在监督学习中使用的训练示例在MLlib中称为“标记点”. 一.本地向量 局部向量具有整数类型和基于0的索引和双类型值,存储在单个机器上. MLlib支持两种类型的局部向量:密集和稀疏. 密集向量由表示其条目值的双数组支持,而稀疏向量由两个并行数组支持:索引和值. 例如,矢量(1.0,0.0,3.0)可以以密集格式…
因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:http://www.cnblogs.com/shishanyuan/p/4747778.html 其中有一些基础和算法类的,会有其他一些文章来做参考. 1.3 协同过滤实例 1.3.1 算法说明 协同过滤(Collaborative Filtering,简称CF,WIKI上的定义是:简单来说是利用某…
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果.其中标签数据是指已知结果的特征数据. 分类和回归的区别:预测结果的变量类型 分类预测出来的变量是离散的(比如对邮件的分类,垃圾邮件和非垃圾邮件),对于二元分类的标签是0和1,对于多元分类标签范围是0~C-1,C表示类别数目: 回归预测出来的变量是…
spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vector)存储在单台机器上,索引采用0开始的整型表示,值采用Double类型的值表示.Spark MLlib中支持两种类型的矩阵,分别是密度向量(Dense Vector)和稀疏向量(Spasre Vector),密度向量会存储所有的值包括零值,而稀疏向量存储的是索引位置及值,不存储零值,在数据量比较大…
监督学习 0.线性回归(加L1.L2正则化) from __future__ import print_function from pyspark.ml.regression import LinearRegression from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("LinearRegressionWithElasticNet")\ .getOrCreate() # 加载数…
spark 模型选择与超参调优 机器学习可以简单的归纳为 通过数据训练y = f(x) 的过程,因此定义完训练模型之后,就需要考虑如何选择最终我们认为最优的模型. 如何选择最优的模型,就是本篇的主要内容: 模型验证的方法 超参数的选择 评估函数的选择 模型验证的方法 在<统计学习方法>这本书中,曾经讲过模型验证的方法有三种,分别是简单的交叉验证,S折交叉验证,留一交叉验证 简单的交叉验证 即把全部数据按照比例分割成两部分,分别是训练集和测试集.在训练集训练模型,在测试集测试效果,最终选择一个代…
Transformer: 是一个抽象类包含特征转换器, 和最终的学习模型, 需要实现transformer方法 通常transformer为一个RDD增加若干列, 最终转化成另一个RDD, 1. 特征转换器通常处理一个dataset, 把其中一列数据转化成一列新的数据. 并且把新的数据列添加到dataset后面,产生一个新的dataset输出. 2. 一个学习模型转换器用来处理一个数据集, 读取包含特征向量的那一列数据, 为每一个特征向量预测一个结果标签, 把预测结果标签作为一个新的数据列里添加…