Numpy初步】的更多相关文章

1,获取矩阵行列数 Import numpyasnp #创建二维的naaray对象 a=np.array([[1,2,3,4,5],[6,7,8,9,10]]) print(a.shape)   #返回一个形状,是一个tuple print(a.shape[0])#获得行数,试想如果是多维的呢,所以你就会明白为什么是[0] print(a.shape[1])   #获得列数 2,矩阵的截取 importnumpyasnp #创建二维的naaray对象 a=np.array([[1,2,3,4,5…
逻辑回归代价函数(损失函数)的几个求导特性 1.对于sigmoid函数 2.对于以下函数 3.线性回归与逻辑回归的神经网络图表示 利用Numpy向量化运算与for循环运算的显著差距 import numpy as np import time ar = np.array([[1,2,3],[4,5,6]] a1 = np.random.rand(10000000) a2 = np.random.rand(10000000) t1 = time.time() np.dot(a1,a2) c = 0…
对numpy中的array进行了了解,array方法的取值arr_2d[0:2, 0:2] pandas 1,read_CSV方法 2,head方法 3,loc方法,取值前开后开, 4,replace方法 5,astype 6,行列取值 7,iloc方法,按维度取值,先取行,再取列 8,value_counts 9,drop方法,axis ,0为行,1为列 10,inplace方法 原地修改 11,bool取值…
Numpy: 计算基础,  以类似于matlab的矩阵计算为基础.  底层以C实现, 速度快. Pandas: 以numpy为基础, 扩充了很多统计工具. 重点是数据统计分析. Matplotlib: 画图. Scipy: 科学计算, 数据挖掘和人工智能的前提.…
caffe刚刚安装配置结束,乘热打铁! (一)环境准备 前面我有两篇文章写到caffe的搭建,第一篇cpu only ,第二篇是在服务器上搭建的,其中第二篇因为硬件环境更佳我们的步骤稍显复杂.其实,第二篇也仅仅是caffe的初步搭建完成,还没有编译python接口,那么下面我们一起搞定吧! 首先请读者再回过头去看我的<Ubuntu16.04安装配置Caffe>( http://www.cnblogs.com/xuanxufeng/p/6150593.html  ) 在这篇博文的结尾,我们再增加…
人们都说Chainer是一块非常灵活you要用的框架,今天接着项目里面的应用,初步接触一下,涨涨姿势,直接上源码吧,看着好理解.其实跟Tensorflow等其他框架都是一个套路,个人感觉更简洁了. """ 测试使用 """ import pickle import time import numpy as np import matplotlib.pyplot as plt from chainer import Chain, Variable,…
原始的 Python list 虽然很好用,但是不具备能够“整体”进行数学运算的性质,并且速度也不够快(按照视频上的说法),而 Numpy.array 恰好可以弥补这些缺陷. 初步应用就是“整体数学运算”和“subset(取子集.随机访问)”. 1.如何构造一个 Numpy array # Create list baseball baseball = [180, 215, 210, 210, 188, 176, 209, 200] # Import the numpy package as n…
一.安装 1.Python 2.numpy 3.pandas 4.lxml 5.............. n.tushare 二.初步测试…
Python调用Java代码部署: jpype下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#jpype 下载的时候需要使用Chrome浏览器进行下载. 安装顺序: 1.pip install wheel 待wheel安装好以后,再安装已经下载的JPype1-0.6.2-cp36-cp36m-win_amd64.whl 文件 2.pip install JPype1-0.6.2-cp36-cp36m-win_amd64.whl 如果有问题,缺少库…
Numpy是python的一个三方库,主要是用于计算的,数组的算数和逻辑运算.与线性代数有关的操作. 很多情况下,我们可以与SciPy和 Matplotlib(绘图库)一起使用.来替代MatLab,下面我来来看一下numpy库的常见的一些操作. #!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np if __name__ == '__main__': print(np.array([1, 2, 3])) 我们可以看到我们…