在看官方教程时,无意中发现别人写的一个脚本,非常简洁. 官方教程地址:http://pytorch.org/tutorials/beginner/data_loading_tutorial.html#sphx-glr-beginner-data-loading-tutorial-py 使用的是dlib自带的特征点检测库,初期用来测试还是不错的 """Create a sample face landmarks dataset. Adapted from dlib/python…
0. 引言 利用 Dlib 官方训练好的模型 “shape_predictor_68_face_landmarks.dat” 进行 68 个点标定: 利用 OpenCv 进行图像化处理,在人脸上画出 68 个特征点,并标明特征点的序号: 实现的 68 个特征点标定功能如下图所示: 图 1 人脸 68 个特征点的标定 1. 开发环境 Python: 3.6.3 Dlib: 19.7 Opencv, NumPy 需要调用的库: import dlib # 人脸检测的库 Dlib import num…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(一).MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)中,采用全连接神经网络(784-300-10),分别用非深度学习框架和基于pytorch实现,训练结果相当. 这里采用卷积神经网络(CNN)中著名的LeNet-5网…
[深度学习工具]·极简安装Dlib人脸识别库 Dlib介绍 Dlib是一个现代化的C ++工具箱,其中包含用于在C ++中创建复杂软件以解决实际问题的机器学习算法和工具.它广泛应用于工业界和学术界,包括机器人,嵌入式设备,移动电话和大型高性能计算环境.Dlib的开源许可证 允许您在任何应用程序中免费使用它.Dlib有很长的时间,包含很多模块,近几年作者主要关注在机器学习.深度学习.图像处理等模块的开发. 安装 此博文针对Windows10安装,其他平台可以仿照这个步骤来安装 安装Minicond…
使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能. 在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中.这个任务会通过 VideoStream 类来完成. 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-…
PDNN: 深度学习的一个Python工具箱 PDNN是一个在Theano环境下开发出来的一个Python深度学习工具箱.它由苗亚杰(Yajie Miao)原创.现在仍然在不断努力去丰富它的功能和扩展它的应用.PDNN发布在under Apache 2.0, one of the least restrictive licenses available. 为什么使用PDNN? PDNN实现了一整套的模型,在这个单一的框架内,无监督学习(SDAs,RBMs),有监督学习(DNN,CNN)和多任务学…
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…
[深度学习] Pytorch学习(一)-- torch tensor 学习笔记 . 记录 分享 . 学习的代码环境:python3.6 torch1.3 vscode+jupyter扩展 #%% import torch print(torch.__version__) # 查看CUDA GPU是否可用 a = torch.cuda.is_available() print(a) #%% # torch.randperm x = torch.randperm(6) print(x) #%% #…
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上…
[神经网络与深度学习][python开发]caffe-windows使能python接口使用draw_net.py绘制网络结构图过程 标签:[神经网络与深度学习] [python开发] 主要是想用python绘制一下设计的网络结构图,以便可视化.因此在caffe-windows的工程配置中将python的选项设置为true,下面记录了整个成功绘图的过程. <1> 配置CommonSettings.props中python接口 <PythonSupport>true</Pyth…
深度学习DeepLearning(Python)实战培训班 时间地点: 2020 年 12 月 18 日-2020 年 12 月 21日 (第一天报到 授课三天:提前环境部署 电脑测试) 一.培训方式:(即日起,开始报名!) 1.远程在线 (集中时间远程操作培训) 2.作业训练 (规定的时间把作业完成) 3.集中答疑 (统一时间进行疑难问题答疑) 二.主讲内容: 课程一: Tensorflow入门到熟练: 课程二:图像分类: 课程三:物体检测: 课程四:人脸识别: 课程五:算法实现: 1.卷积神…
参考:http://python.jobbole.com/87522/ 1.首先要安装Anaconda 1)什么是Anaconda Anaconda是Python的包管理器和环境管理器,是一个包含180+的科学包及其依赖项的发行版本.其包含的科学包包括:conda, numpy, scipy, ipython notebook等. 1.包管理 Anaconda附带了一大批常用数据科学包,它附带了conda.Python和 150 多个科学包及其依赖项.因此你可以用Anaconda立即开始处理数据…
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地址信息,就可以和服务建立连接,然后就可以进行通信了.这篇帖子详细说一下,go-micro的通信协议.编码,和具体服务方法的调用过程是如何实现的,文中的代码还是我github上的例子: gomicrorpc go-micro 支持很多通信协议:http.tcp.grpc等,支持的编码方式也很多有jso…
一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. 上左图中,箭头的长度表示陡峭度,越陡峭的地方箭头越长,箭头指向的方向是y变大的方向,如果要使用梯度下降,则需要取负方向. 右图中,蓝色代表低点,红色代表高点,中间的箭头方向从蓝色指向红色,而且中间最陡峭的地方,箭头最长. 二.梯度下降 上图中分别使用梯度下降优化θ1和θ2的值,α表示学习率,即每次按…
深度学习网络课程QQ群群号: 1057802989(加群备注:杨春娇邀请) 强化学习QQ交流群群号: 872395038(加群备注:杨春娇邀请)…
一.查看cuda及cudnn版本 先确保安装了显卡:nvidia-smi 查看 cat /usr/local/cuda/version.txt cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2  或者 nvcc --version ,后一个版本更靠谱,因为前者完全依赖/usr/local/cuda/include/cudnn.h 这个文件,而这个文件并不一定非得在这个路径中,尤其是既没有root又没有admin权限的情况下.…
一.继承nn.Module类并自定义层 我们要利用pytorch提供的很多便利的方法,则需要将很多自定义操作封装成nn.Module类. 首先,简单实现一个Mylinear类: from torch import nn # Mylinear继承Module class Mylinear(nn.Module): # 传入输入维度和输出维度 def __init__(self,in_d,out_d): # 调用父类构造函数 super(Mylinear,self).__init__() # 使用Pa…
一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使用visdom # 导入Visdom类 from visdom import Visdom # 定义一个env叫Mnist的board,如果不指定,则默认归于main viz = Visdom(env='Mnist') # 在window Accuracy中画train acc和test acc,x…
本文简单描述如果自定义dataset,代码并未经过测试(只是说明思路),为半伪代码.所有逻辑需按自己需求另外实现: 一.分析DataLoader train_loader = DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))…
一.Pytorch安装 安装cuda和cudnn,例如cuda10,cudnn7.5 官网下载torch:https://pytorch.org/ 选择下载相应版本的torch 和torchvision的whl文件 使用pip install whl_dir安装torch,并且同时安装torchvision 二.初步使用pytorch # -*- coding:utf-8 -*- __author__ = 'Leo.Z' import torch import time # 查看torch版本…
首先从google上下载protobuf-2.5.0.zip和protoc-2.5.0-win32.zip,然后把protoc-2.5.0-win32.zip里的protoc.exe放到protobuf-2.5.0\src\下. 切换到protobuf-2.5.0\python 执行指令 python setup.py build, python setup.py test, python setup.py install…
今天要补上两天的 不补了,新手,看的比较慢-- 手写识别例子跳过先 思考如何实现数字5的识别 三种方法: 训练数据:学习,寻找最优解 测试数据:评价模型能力. 损失函数:以损失函数为线索寻找自由权重参数,讲解损失函数:https://blog.csdn.net/qq_24753293/article/details/78788844 mini-batch学习:机器学习就是是针对训练数据计算损失函数的值,找出使该值尽可能小的参数,所以如果训练数据有100 个的话,我们就要把这100 个损失函数的总…
Learn From: Pytroch 官方Tutorials Pytorch 官方文档 环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展 #%% #%% # 1.Loading and normalizing CIFAR10 import torch import torchvision import torchvision.transforms as transforms batch_size = 16 transform = transform…
声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import numpy as np 2 import scipy.special as ss 3 import matplotlib.pyplot as plt 4 import imageio as im 5 import glob as gl 6 7 8 class NeuralNetwork: 9 # initi…
不得不感慨,现在现成的东西太多了,直接拿来用就行了 dlib安装(指定版本安装,避免踩坑) pip dlib中训练好的文件http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 下载解压到项目中 代码 import numpy as np import cv2 as cv import dlib detector = dlib.get_frontal_face_detector() predictor = dlib.shap…
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor-> variable(autograd)-> nn.Module三个由低到高的抽象层次,分别代表高维数组(张量).自动求导(变量)和神经网络(层/模块).这三个抽象之间联系紧密,可以同时进行修改和操作 在IPython和Jupyter notebook两个工具中使用了Jupyter noteboo…
30个深度学习库:按Python.C++.Java.JavaScript.R等10种语言分类 包括 Python.C++.Java.JavaScript.R.Haskell等在内的一系列编程语言的深度学习库. 一.Python1.Theano 是一种用于使用数列来定义和评估数学表达的 Python 库.它可以让 Python 中深度学习算法的编写更为简单.很多其他的库是以 Theano 为基础开发的:Keras 是类似 Torch 的一个精简的,高度模块化的神经网络库.Theano 在底层帮助其…
感知器-从零开始学深度学习 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程. 我希望在学习过程中做到以下几点: 了解各种神经网络设计原理. 掌握各种深度学习算法的python编程实现. 运用深度学习解决实际问题. 让我们开始踏上深度度学习的征程. 一.感知器原型 想要了解“神经网络”,我们需要了解一种叫做“感知器”的⼈⼯神经元.感知器在 20 世纪五.六⼗年代由科学家 Frank Rosenbla…
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: GPU 学习深度学习系列Part 1:传统机器学习的回顾 GPU 学习深度学习系列Part 2:Tensorflow 简明原理 上一讲中,我们用最简单的代码,实现了最简单的深度学习框…