原文地址: https://blog.csdn.net/elysion122/article/details/79628587 ------------------------------------------------------------------------------------------------- 因为最近在将一个caffe的model移植到pytorch上,发现移植过去就没法收敛了,因此专门研究了一些细节. batch normalization的公式如下: caffe…
转载链接:http://withwsf.github.io/2016/04/14/Caffe-with-Python-Layer/ Caffe通过Boost中的Boost.Python模块来支持使用Python定义Layer: 使用C++增加新的Layer繁琐.耗时而且很容易出错 开发速度与执行速度之间的trade-off 编译支持Python Layer的Caffe 如果是首次编译,修改Caffe根目录下的Makefile.cinfig,uncomment 1 WITH_PYTHON_LAYE…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
Caffe源码阅读(1) 全连接层 发表于 2014-09-15   |   今天看全连接层的实现.主要看的是https://github.com/BVLC/caffe/blob/master/src/caffe/layers/inner_product_layer.cpp 主要是三个方法,setup,forward,backward setup 初始化网络参数,包括了w和b forward 前向传播的实现 backward 后向传播的实现 setup 主体的思路,作者的注释给的很清晰.主要是要…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
caffe中有把fc层转化为conv层的,其实怎么看参数都是不变的,对alex模型来说,第一个fc层的参数是4096X9216,而conv的维度是4096x256x6x6,因此参数个数是不变的,只是需要把fc的参数存储方法改变成conv 的. 在caffe的官方网站:http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb 有说明怎么转换.首先将原模型加载进来fc_param,然后把全…
本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression的一种推广. Logistic Regression只能用于二分类,而softmax可以用于多分类. softmax与softmax…
多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetron,MLP),介绍多层神经网络的概念. 隐藏层 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer).隐藏层位于输入层和输出层质检.下图展示了一个多层感知机的神经网络,它含有一个隐藏层,该层中有5个隐藏单元. 输入和输出个数为别为4和3,中间隐藏层中包含了5个隐藏单元.由…
回到目录 看似不伦不类 这个题目有点不伦不类,或者说有点伪模式了,不错,确实是这样,我们正确的开发思维是WEB层->BLL层->DATA层,每个层有对它下层的引用,下层不能引用上层,因为这会出现相互引用的错误,在实际工作中,BLL层会有涉及到各个业务的代码组织,实现数据持久化一般在Data层完成,这是可以理解的,也是我们经常使用的开发模式,这当然不是今天的重点,今天主要说一个实际问题,如订单处理的场合. 一般订单处理流程如下: 1 用户选择商品到购物车 2 用户确定购买,生成订单 3 选择一种…