mobilenet之Depthwise +Pointwise】的更多相关文章

我们知道,mobilenet是适用于移动端的深度学习网络,主要优点是参数少.模型小.准确率相比一些传统卷积损失少等特点. mobileNet之所以这么ok,是因为引入了Depthwise +Pointwise 的结构; 简而言之, Depthwise :就是在depth上面做文章,就是常说的channel ,对不同的channel使用不同的卷积核卷积提取特征 Pointwise:就是正常的卷积方式啦,但是是point的,就是对某一点,某一像素,所以kernel=[1,1],下图明了:…
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN模型之MobileNet Mobilenet网络的理解 轻量化网络:MobileNet-V2 Tensorflow实现参考: https://github.com/Zehaos/MobileNet 前言: 目前,CNN以及其他神经网络正在飞速发展与应用,为了追求高准确率,网络模型的深度和复杂度越来越…
MobileNet (Efficient Convolutional Neural Networks for Mobile Vision Applications)--Google CVPR-2017 MobileNet引入了传统网络中原先采用的group思想,即限制滤波器的卷积计算只针对特定的group中的输入,从而大大降低了卷积计算量,提升了移动端前向计算的速度. 1.1 卷积分解 MobileNet借鉴factorized convolution的思想,将普通卷积操作分为两部分: Dept…
导言 新的CNN网络的提出,提高了模型的学习能力但同时也带来了学习效率的降低的问题(主要体现在模型的存储问题和模型进行预测的速度问题),这使得模型的轻量化逐渐得到重视.轻量化模型设计主要思想在于设计更高效的"网络计算方式"(尤其针对卷积方式),从而不损失网络性能的前提下,减少网络计算的参数.本文主要介绍其中的一种--MobileNet[1](顾名思义,是能够在移动端使用的网络模型). 深度可分离卷积 MobileNet实现模型轻量化的核心是depth-wise separable co…
论文地址:HetConv 一.现有网络加速技术 1.卷积加速技术 作者对已有的新型卷积划分如下:标准卷积.Depthwise 卷积.Pointwise 卷积.群卷积(相关介绍见『高性能模型』深度可分离卷积和MobileNet_v1),后三种卷积可以取代标准卷积,使用方式一般是 Depthwise + Pointwise 或者是 Group + Pointwise 这样的两层取代(已有网络架构中的)标准卷积的一层,成功的在不损失精度的前提下实现了 FLOPs 提升,但是带来副作用是提高了网络延迟(…
论文原址:MobileNets v1 TensorFlow实现:mobilenet_v1.py TensorFlow预训练模型:mobilenet_v1.md 一.深度可分离卷积 标准的卷积过程可以看上图,一个2×2的卷积核在卷积时,对应图像区域中的所有通道均被同时考虑,问题在于,为什么一定要同时考虑图像区域和通道?我们为什么不能把通道和空间区域分开考虑? 深度可分离卷积提出了一种新的思路:对于不同的输入channel采取不同的卷积核进行卷积,它将普通的卷积操作分解为两个过程. 卷积过程 假设有…
ShuffleNet (An Extremely Efficient Convolutional Neural Network for Mobile Devices) —— Face++ shuffle 具体来说是 channel shuffle,是将各部分的 feature map 的 channel 进行有序的打乱,构成新的 feature map,以解决 group convolution 带来的 信息流通不畅 问题.(MobileNet 是用 point-wise convolution…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…
一.参数数量和理论计算量 1.定义 参数数量(params):关系到模型大小,单位通常为M,通常参数用 float32 表示,也就是每个参数占4个字节,所以模型大小是参数数量的 4 倍 理论计算量(FLOPs): 是 floating point operations 的缩写(注意 s 小写),可以用来衡量算法/模型的复杂度,这关系到算法速度,大模型的单位通常为 G,小模型单位通常为 M 通常只考虑乘加操作(Multi-Adds)的数量,而且只考虑 CONV 和 FC 等参数层的计算量,忽略 B…
CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向. 注:水平所限,下面的见解或许有偏差,望大牛指正.另外只介绍其中具有代表性的模型,一些著名的模型由于原理相同将不作介绍,若有遗漏也欢迎指出. 一.卷积只能在同一组进行吗?-- Group convolution Group convolution 分组卷积,最早在AlexN…