一.论文采用的新方法 1.AttGan中skip connect的局限性 由于encoder中对特征的下采样实际上可能损失部分特征,我们在decoder中进行上采样和转置卷积也无法恢复所有特征,因此AttGan考虑采用了skip connect,这种跳跃连接最初是resnet中为了解决网络层数过深带来的梯度爆炸和梯度消失无法训练的问题,笔者认为在人脸属性编辑这里并非是这一用途,而是为了保持最初人脸的特征.但是这一做法仍然具有其局限性,根据实验,重建图像的质量明显上升,但是控制图像属性的能力却有所…
<Macro-Micro Adversarial Network for Human Parsing> 摘要:在人体语义分割中,像素级别的分类损失在其低级局部不一致性和高级语义不一致性方面存在缺陷.对抗性网络的引入使用单个鉴别器来解决这两个问题.然而,两种类型的解析不一致是由不同的机制产生的,因此单个鉴别器很难解决它们.为解决这两种不一致问题,本文提出了宏观 - 微观对抗网络(MMAN).它有两个鉴别器,一个鉴别器Macro D作用于低分辨率标签图并且惩罚语义不一致性,例如错位的身体部位.另一…
转自:http://blog.csdn.net/mao_xiao_feng/article/details/54426101 一.Domain adaptation 在开始介绍之前,首先我们需要知道Domain adaptation的概念.Domain adaptation,我在标题上把它称之为域适应,但是在文中我没有再翻译它,而是保持它的英文原意,这也有助于我们更好的理解它的概念. Domain adaptation的目标是在某一个训练集上训练的模型,可以应用到另一个相关但不相同的测试集上.…
记录<DEEP METRIC LEARNING USING TRIPLET NETWORK>阅读笔记 文章总体内容: 作者在前人提出的多个特征提取方法的基础上提出Triplet network模型,通过比较距离来学习有用的变量(深度学习中拟合出函数),在多个不同的数据集显示Triplet network比直接计算方法的Siamese network模型效果更好. Triplet network基本原理: 在Siamese network中,会出现如下的问题,当使用随机对象的数据集时,一个对象可…
Introduction (1)Motivation: 当前CNN无法提取图像序列的关系特征:RNN较为忽视视频序列前期的帧信息,也缺乏对于步态等具体信息的提取:Siamese损失和Triplet损失缺乏对label信息的考虑(???). (2)Contribution: 提出一个新的端到端网络框架,称为 CNN and RNN Fusion(CRF),结合了Siamese.Softmax 联合损失函数.分别对全身和身体局部进行模型训练,获得更有区分度的特征表示. Method (1)框架: (…
[论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要内容 参考文献 (1) 解决问题 大多数先前的工作,要么是没有考虑到网络的高阶相似度(如谱聚类,DeepWalk,LINE,Node2Vec),要么是考虑了但却使得算法效率很低,不能拓展到大规模网络(如GraRep). (2) 主要贡献 Contribution 1. 将许多现有的NRL算法架构总结…
[论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都只考虑了网络的局部拓扑结构信息,忽略了原始网络中潜藏的社区信息. (2) 主要贡献 Contribution: 为了结合聚类将表示学习应用于基于图结构的社区发现任务上,本文在随机游走过程中结合了社区信息,使得同社区节点具有相近的表示向量,方便聚类任务. (3) 算法原理 CARE算法框架主要包含两个…
[论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 本篇论文是针对现有表征算法计算开销比较大,不能够很好应用到大规模网络上的问题. (2) 主要贡献 Contribution: 提出一种快速且可扩展网络表征框架,LouvainNE,能够为包含数百亿边的网络生成高质量的表征向量. (3) 算法…
[论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能捕获具有高度非线性的网络结构,导致学习到一个局部最优的节点向量表示. (2) 主要贡献 Contribution: 提出一个半监督的深度模型SDNE,包含多个非线性层,同时优化一阶和二阶相似度的目标函数来保留原始网络的局部和全局网络结构,因此可能能够捕获高度非线性的网络结构. (3) 算法原理 简单…
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现在常常用来处理属性网络表征的方式有两种:(1)在网络结构上传播属性(2)通过自编码器架构. 这两种常用的属性网络表征方法有各自的局限性和优点:(1)基于传播的方法依赖于网络中现有的边来传播信息,因此往往偏向于建模网络结构信息而非节点属性信息,从而更加擅长于处理结构信息(可以通过多层叠…
[论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现有的基于GAN的方法大多都是先假设服从一个高斯分布,然后再来学习节点嵌入(匹配节点嵌入向量服从这个假设的先验分布). 这可能存在两个问题: 一个问题是(由于真实数据是有很多噪声的,所以会为GAN模型学习的分布带来很多噪声)很难从节点向量表示中区分出噪声节点,因为所有节点都是服从…
A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021) 本篇博客是对A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation的一些重要idea的解读,原文连接为:A Unified Deep Model of Learning f…
senet: https://arxiv.org/abs/1709.01507 sknet: http://arxiv.org/abs/1903.06586 TL, DR Selective Kernel Networks 启发自皮质神经元根据不同的刺激可动态调节其自身的receptive field, 从而在CNN每一个 stage, 增加不同尺寸 filter 分支. 总体网络结构和 SENet 相似(几乎一致), 相对于大网络, 对小网络的性能提升比较明显. SENet abstract…
论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中.FSAF解决了传统基于anchor机制的两个限制:(1)启发式的特征选择(2)overlap-based anchor采样.FSAF的通用解释是将在线特征选择应用于与anchor无关的分支的训练上.即无anchor的分支添加到特征金字塔的每一层,从而可以以任意层次对box进行编码解码.训练过程中,将…
1.BP neural network optimized by PSO algorithm on Ammunition storage reliability prediction 文献简介文献来源:https://ieeexplore.ieee.org/document/8242856 文献级别:EI检索 摘要:Storage reliability of the ammunition dominates the efforts in achieving the mission reliab…
前面曾提到过CTPN,这里就学习一下,首先还是老套路,从论文学起吧.这里给出英文原文论文网址供大家阅读:https://arxiv.org/abs/1609.03605. CTPN,以前一直认为缩写一般是从题目的开始依次排序选取首字母的,怕是孤陋寡闻了,全称是“ Detecting Text in Natural Image with Connectionist Text Proposal Network”,翻译过来是基于连接Proposal(直译太难受!!)网络的文本检测. 作者在论文中描述了…
网络安全问题的背景 网络安全研究的内容包括很多方面,作者形象比喻为盲人摸象,不同领域的网络安全专家对网络安全的认识是不同的. For researchers in the field of cryptography, security is all about cryptographic algorithms and hash functions. Those who are in information security focus mainly on privacy, watermarkin…
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL  DEEP  CONVOLUTIONAL NEURAL NETWORK 论文地址:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7730324 1.文章简介: 该论文是用双通道卷积神经网络CNN分别提取空谱信息,然后将得到的抽象特征级联为全连接层的输入,以此作为空谱联合信息输入两层全连接层以及softmax层.此外,文中针对小…
1.引言 网络虚拟化, 1.支持同一个底层网络有多种网络架构,每种架构定制一个应用或用户社区. 2.也可以让多个服务提供者在共同的物理基础设施上定制端到端的服务.如Voice over IP(VoIP)在虚拟网络上表现的很好.网上银行运行在虚拟网络上可以更安全. 要高效利用底层资源需要对于虚拟网络映射的有效的技术,这项技术非常有挑战性,有4点主要原因: 1.节点和链路的限制. 每个虚拟网络请求都有资源限制,如:1.节点上的处理资源(如需要每个节点提供1GHz的CPU).2.链路上的带宽资源(如每…
C. Cellular Network time limit per test 3 seconds memory limit per test 256 megabytes input standard input output standard output You are given n points on the straight line - the positions (x-coordinates) of the cities and m points on the same line…
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Generative Adversarial Network,简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习.该方法由扬·古德费洛等人于2014年提出.[1] 生成对抗网络由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出…
Arctic Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19113   Accepted: 6023 Description The Department of National Defence (DND) wishes to connect several northern outposts by a wireless network. Two different communication tec…
QS Network Time Limit: 2 Seconds      Memory Limit: 65536 KB Sunny Cup 2003 - Preliminary Round April 20th, 12:00 - 17:00 Problem E: QS Network In the planet w-503 of galaxy cgb, there is a kind of intelligent creature named QS. QScommunicate with ea…
Basic Networking 1.混杂模式(promiscuous mode):当网卡被配置为混杂模式时,它们会将所有的frame传递给操作系统,即使MAC地址不匹配. 2.交换机(switch)是一种拥有多个端口的网络硬件,能将frame从连接的一个主机转发到另一个主机.它会维护一张叫做forwarding table或者交forwarding information base(FIB)的表,用于记录MAC地址和端口的关系,该表由交换机转发frame的过程中学习获得.交换机还可以级联在一起…
出处:ICLR 2017 Motivation 提出一个通用的基于RNN的pop music生成模型,在层次结构中封装了先验乐理知识(prior knowledge about how pop music is composed).bottom layers生成旋律,higher levels生成鼓,和弦等.人工听觉测试的结论优于google提出的模型.并且作者基于该模型加了两个小应用:neural dancing and karaoke, as well as neural story sin…
出处 arXiv.org (引用量暂时只有3,too new)2017.7 SourceCode:https://github.com/RichardYang40148/MidiNet Abstract 以前的音乐生成工作多基于RNN,受DeepMind提出的WaveNet的启发,作者尝试用CNN来生成音乐,确切地说,用GAN来生成音乐,模型称为MidiNet.与Google的MelodyRNN(magenta)相比,在realistic和pleasant上旗鼓相当,yet MidiNet’s…
论文原址:https://arxiv.org/pdf/1903.06586.pdf github: https://github.com/implus/SKNet 摘要 在标准的卷积网络中,每层网络中神经元的感受野的大小都是相同的.在神经学中,视觉神经元感受野的大小是由刺激机制构建的,而在卷积网络中却很少考虑这个因素.本文提出的方法可以使神经元对于不同尺寸的输入信息进行自适应的调整其感受野的大小.building block为Selective Kernel单元.其存在多个分支,每个分支的卷积核…
Introduction (1)Motivation: 当前的行人重识别方法都只能在标准的数据集上取得好的效果,但当行人被遮挡或者肢体移动时,往往效果不佳. (2)Contribution: ① 提出了一个基于区域的适应性质量估计网络(adaptive region-based quality estimation network,RQEN),包含了区域性特征提取模块和基于区域的质量预测模块.其旨在减小低质量图像区域的影响,利用序列中的区域互补. ② 提供了一个大规模的较整洁的数据集:Label…
论文链接:https://arxiv.org/abs/1811.05320 博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 解读了一下这篇论文github上关于T-GCN的代码,主要分为main文件与TGCN文件两部分,后续有空将会更新其他部分作为baseline代码的解读(鸽). 1.main.py # -*- coding: utf-8 -*- import pickle as pkl import tensorflow…
DeepPrivacy: A Generative Adversarial Network for Face Anonymization ISVC 2019 https://arxiv.org/pdf/1909.04538.pdf  (个人理解,欢迎指正错误)   Introduction 隐私:整个人脸 可用性:是看起来自然的人 文章基于CGAN架构,模型以被遮蔽敏感信息的人脸为输入,以真实人脸中的若干个关键点为条件信息生成假人脸.合成人脸在匿名的同时保留数据分布,使数据适合于进一步训练深度学…