题目: 有⼀块有 n 段的栅栏,要求第 i 段栅栏最终被刷成颜色 ci .每⼀次可以选择 l, r 把第l . . . r 都刷成某种颜色,后刷的颜⾊会覆盖之前的.⼀共有 m 种颜色,雇主知道只需要用m 次就能达成目标,因此你只能刷 m 次.但是你还是可以想办法磨洋工,你希望最⼤化 m 次刷漆选择的区间长度(r − l + 1)总和. 分析: 这个题目有一种似曾相识的感觉…… 罢了……人生三大错觉——手机振动.有人敲门.这题我会…… 这个题呢,题目里有提到,只需要m次即可完成涂色,这说明什么?…
题面 一根长为 n 的无色纸条,每个位置依次编号为 1,2,3,-,n ,m 次操作,第 i 次操作把纸条的一段区间 [l,r] (l <= r , l,r ∈ {1,2,3,-,n})涂成颜色 i ,最后一定要把纸条涂满颜色,问最终的纸条有多少种可能的模样. 输入为两个数 n,m ,输出为你的答案 m <= n <= 1e6 题解 不考虑先前染的颜色被覆盖这件事情.如果某种颜色在最终的序列中出现了 x 次,那么我们就直接认为在染这种颜色的时候,我们只染了 x 个格子. 但这样一来每次染…