给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 1 确定区间[a,b],验证f(a)·f(b)<0,给定精确度ξ. 2 求区间(a,b)的中点c. 3 计算f(c). (1) 若f(c)=0,则c就是函数的零点; (2) 若f(a)·f(c)<0,则令b=c; (3) 若f(c)·f(b)<0,则令a=c. (4) 判断是否达到精确度ξ:即若|a-b|<ξ,则得到零点近似值a(或b),否则重复2-4 double fun(double a, double b,doubl…
一:用迭代法求 x=√a.求平方根的迭代公式为:X(n+1)=(Xn+a/Xn) /2. #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <math.h> int main() { double x1, x2; float a; scanf("%f", &a); x2 = 1.0; do { x1 = x2; x2 = (x1 +…
二分法求根 思路:对于一个连续函数,左值f(a)*右值f(b)如果<0,那么在这个区间内[a,b]必存在一个c使得f(c)=0 那么思路便是取中间点,分成两段区间,然后对这两段区间分别再比较,跳出比较的判断便是精确度 # 二分法求根 # 函数为exp(x)*lnx - x**2 import math # 定义需要求根的函数,等会方便调用 def func(x): result = math.exp(x)*math.log(x) - x**2 return result def binary(a…
求根是数值计算的一个基本问题,一般采用的都是迭代算法求解,主要有不动点迭代法.牛顿-拉富生算法.割线法和二分法. 不动点迭代法 所谓的不动点是指x=f(x)的那些点,而所谓的不懂点迭代法是指将原方程化为x=f(x)形式之后,下一步所用的x值为这一步的f(x),这样的话就可以一直逼近我们需         要的x,即方程的根,但是这种方法可能不会收敛到方程的根,随着初始值选定的大小,可能会有发散的情况,因此需要谨慎使用. ###不动点迭代法 func1 <- function(x){return(…
C语言--求根:计算机只识别0和1,那么问题来了,作为计算工具如何解决数学问题?其实,计算机是死东西,都是程序员用计算机的的思维去加数学公式计算数学题的.听起来好高端的样子,其实啊,也就那么回事儿, 请看~~求平方根,也许你会说,这还不简单直接调用square函数就好了,这个还用说么?可是我若问你那么square函数是如何实现求平方根的呢?怎么样是不是没那么简单呢?且看: 牛刀小试~ 迭代法求平方根  数学公式为X(n+1)=1/2*(X(n)+a/X(n)); 算法如下: 1)设定一个X0的值…
很水的一道题,因为你发现这个函数是单调递减的,所以二分法求出函数的根即可. #include <cstdio> #include <cmath> //using namespace std; ; double p, q, r, s, t, u; inline double f(double x) { return p*exp(-x) + q*sin(x) + r*cos(x) + s*tan(x) + t*x*x + u; } int main() { //freopen(&quo…
03-树1. 二分法求多项式单根(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 杨起帆(浙江大学城市学院) 二分法求函数根的原理为:如果连续函数f(x)在区间[a, b]的两个端点取值异号,即f(a)f(b)<0,则它在这个区间内至少存在1个根r,即f(r)=0. 二分法的步骤为: 检查区间长度,如果小于给定阈值,则停止,输出区间中点(a+b)/2:否则 如果f(a)f(b)<0,则计算中点的值f((a+b)/2):…
二分法求函数的零点 总时间限制: 1000ms 内存限制: 65536kB 描述 有函数:f(x) = x5 - 15 * x4+ 85 * x3- 225 * x2+ 274 * x - 121 已知 f(1.5) > 0 , f(2.4) < 0 且方程 f(x) = 0 在区间 [1.5,2.4] 有且只有一个根,请用二分法求出该根. 输入 无. 输出 该方程在区间[1.5,2.4]中的根.要求四舍五入到小数点后6位. 解析 浮点二分练手题,首先打个表判断函数在[1.5,2.4]的单调性…
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number. An example is the root-to-leaf path 1->2->3 which represents the number 123. Find the total sum of all root-to-leaf numbers. For example, 1 / \ 2 3…
<body>方程ax2+bx+c=0;一元二次方程.求根请输入a:<input type="number" id="a"/><br />请输入b:<input type="number" id="b"/><br />请输入c:<input type="number" id="c"/><br /><i…