[SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<algorithm> #include<set…
「SPOJ 3105」Power Modulo Inverted 传送门 题目大意: 求关于 \(x\) 的方程 \[a^x \equiv b \;(\mathrm{mod}\; p) \] 的最小自然数解,不保证 \(a,p\) 互质 如果保证 \(a,p\) 互质,那么可以直接使用 \(\texttt{BSGS}\) 算法通过本题. 对于这道题目,我们考虑将式子变形 令 \(t=\gcd(a,p)\),则有 \[\frac{a}{t}a^{x-1} \equiv \frac{b}{t} \;…
思路: 前两题题面相同,代码也相同,就只贴一题的题面了.这三题的意思都是求A^X==B(mod P),P可以不是素数,EXBSGS板子题. SPOJ3105题目链接:https://www.spoj.com/problems/MOD/ POJ3243题目链接:http://poj.org/problem?id=3243 题目: 代码实现如下: #include <set> #include <map> #include <queue> #include <stac…
传送门 关于exbsgs是个什么东东可以去看看yyb大佬的博客->这里 //minamoto #include<iostream> #include<cstdio> #include<cmath> #include<map> #define ll long long #define GG {puts("No Solution");} using namespace std; #define getc() (p1==p2&&a…
调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那是因为聪哥早就会了,所以他觉得学这个没用,信他才怪233 #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef lo…
什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a.c不互质根本就没有逆元.) 如果x有解,那么0<=x<C,为什么? 我们可以回忆一下欧拉定理: 对于c是素数的情况,φ(c)=c-1 那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下).那么0~φ(c)必定是一个循环节(不一定是最小的)…
题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板子,部分学习内容在这里 \((Click\ here)\). 敲完板子就能获得至少 5 倍经验. 过程中疯狂 \(WA\) 所以总结需要注意的几点-- · 令 \(m = sqrt(p) + 1\) 比较保险,不然有的时候会枚举不到 · 在令 \(a\),\(p\) 互质的循环中,\(b = d\)…
当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法 方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229 典型例题是POJ3243 #include<cstdio> #include<cmath> #include<algorithm> using namespace std; struct Hashmap { ,maxe=; ],nxt[maxe+],w[maxe+]; ];…
上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了啊,那么怎么办呢? 既然是x和z不互质,那么我们就想办法让他们互质,再套用BSGS的解法即可.(这就是所谓的消因子法) 代码如下: #include<cstdio> #include<cstring> #include<cstring> #include<iostre…
Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, Y, Z, we all know how to figure out K fast. However, given X, Z, K, could you figure out Y fast? Input Input data consists of no more than 20 test ca…