题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不升的,那么我们可以维护他的差分数组(两个差分数组相加再求和 与 对两个原数组直接求和是一样的) 向上合并的过程中对\(a[x]\)处\(+1\),再找到\(a[x]\)之前为\(1\)的位置\(-1\)即可 (怎么感觉暴力区间加也可以qwq) 复杂度\(O(nlogn)\) // luogu-jud…
在 dp 问题中,如果发现可以用后缀最大值来进行转移的话可以考虑去查分这个后缀最大值. 这样的话可以用差分的方式来方便地进行维护 ~ #include <bits/stdc++.h> #define N 200007 #define ll long long #define lson t[x].ls #define rson t[x].rs #define setIO(s) freopen(s".in","r",stdin) using namespac…
传送门 给出n个带点权的点,支持连边和查询连通块第k大. 这个貌似就是一道线段树合并的裸板啊... 代码: #include<bits/stdc++.h> #define N 100005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getchar(); while(isdigit(ch))ans=(ans<<3)+(ans<<1)…
题解 P4577 [FJOI2018]领导集团问题 题解区好像没有线段树上又套了二分的做法,于是就有了这片题解. 题目传送门 怀着必 WA 的决心交了两发,一不小心就过了. 题意 求一个树上最长不下降子序列. 思路 首先考虑裸的 dp:设 \(f_{u,j}\) 表示以 \(u\) 为根的子树里选的数的最大值不小于 \(j\) 能选多少个. \[f_{u,j}= \begin{cases} \sum_\limits{v\ is\ u's\ son}f_{v,j} &j>w_u\\ \max\…
P4577 [FJOI2018]领导集团问题 我们对整棵树进行dfs遍历,并用一个multiset维护对于每个点,它的子树可取的最大点集. 我们遍历到点$u$时: 不选点$u$,显然答案就为它的所有子树的子集大小之和(所以答案是单调不减的) 选点$u$时,我们lower_bound一个比$val[u]$小且最接近$val[u]$的权值,用$val[u]$替换它. 为什么可以酱紫做呢 试想一下,当multiset中的元素都被替换到比点$k$的权值$val[k]$大时 这时把$val[k]$扔进去,…
今年年初的时候参加了PKUWC,结果当时这一题想了快$2h$都没有想出来.... 哇我太菜啦.... 昨天突然去搜了下哪里有题,发现$loj$上有于是就去做了下. 结果第一题我5分钟就把所有细节都想好了啊5555.... 场上$60pts$消失... 显然,我们可以用$f[i][j]$表示节点$i$值为第$j$大的值的概率. 我们不难列出$dp$式子,$f[i][j]=f[s1][j] \times (s[s2][j-1]\times p+(s[s2][m]-s[s2][j])\times (1…
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感觉已经很难做到比$O(n^2)$更优的复杂度了,但我们要看到题目里有什么条件没用上:每个节点最多有2个儿子. 这个提醒我们可以用启发式合并,据说splay可以做,但我们可以考虑一下线段树合并做法. 仍然采用上面的转移方程,这里线段树上的一个节点T[x]表示x表示的区间[L,R]最终成为当前子树的根的…
点此看题面 大致题意: 有\(n\)个村庄,每个村庄有\(4\)个属性:\(D_i\)表示与村庄\(1\)的距离,\(C_i\)表示建立基站的费用,\(S_i\)表示能将其覆盖的建基站范围,\(W_i\)表示没建设基站所要付出的代价. 暴力\(DP\) 首先我们来考虑一波暴力\(DP\). 设\(f_{i,j}\)为在前\(i\)村庄共建\(j\)个基站且第\(i\)个村庄必选所需的最小代价. 为了方便起见,我们定义它不管其之后的代价. 而这样统计答案又略显麻烦. 因此我们可以考虑在最后增加一个…
[模板]"动态 DP"&动态树分治 第一道动态\(DP\)的题,只会用树剖来做,全局平衡二叉树什么的就以后再学吧 所谓动态\(DP\),就是在原本的\(DP\)求解的问题上加上修改操作,从而使得问题变成动态的问题 这道题的问题就是普通的树形\(DP\)上加上了修改点权的操作 题意: 给定一棵 \(n\) 个点的树.\(i\) 号点的点权为 \(a_i\).有 \(m\) 次操作,每次操作给定 \(u\),\(w\),表示修改点 \(u\) 的权值为 \(w\).你需要在每次操作…
To 洛谷.2982 慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N move from the barn to her private pasture. The pastures are organized as a tree, with the barn being on pasture 1. Exactly N-1 cow…