SVM探讨】的更多相关文章

目录 SVM探讨 SVM算法 硬间隔最大化的优化目标 软间隔最大化 SVM探讨 SVM算法 根据处理问题的复杂度,SVM 可由简到繁分为三种: 线性可分支持向量机:硬间隔最大化. 线性支持向量机:数据分布近似线性可分,可通过软间隔最大化(惩罚因子,松弛变量)来线性分隔样本点. 非线性支持向量机:通过核函数提升特征维度,做个一个非线性的变换,来将非线性问题转化为线性问题. 先写出==SVM定义损失函数的策略==: 求得的超平面能够让所有点中离它最近的点具有最大间距.这样我们可以得出结论,我们更应该…
首先,对于支持向量机(SVM)的简单总结: 1. Maximum Margin Classifier 2. Lagrange Duality 3. Support Vector 4. Kernel 5. Outliers 6. Sequential Minimal Optimization 本文转载自:http://www.cnblogs.com/jerrylead 1 简介 支持向量机基本上是最好的有监督学习算法了.最开始接触SVM是去年暑假的时候,老师要求交<统计学习理论>的报告,那时去网…
1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点,已知这些点可以分为两类,现在让你将它们分类. (图1) 显然我们可以发现所有的点一类位于左下角,一类位于右上角.所以我们可以很自然将它们分为两类,如图2所示:红色的点代表一类,蓝色的点代表一类. (图2) 现在如果让你用一条直线将这两类点分开,这应该是一件非常容易的事情,比如如图3所示的三条直线都…
[转载请注明出处]http://www.cnblogs.com/jerrylead 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束.通常解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数. 然后分别对w和求偏导,使得偏导数等于0,然后解出w和.至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变…
最近做个小东西,要用到SVM,搜索网上,发现大伙都是各种介绍理论,让我等小码农晕头转向,是故自己学习总结一下,并将代码实例展示出来,方便大家共同探讨,该代码是用opencv编写的,很容易学习滴. 1.SVM小介绍 SVM是一种用超平面定义的分类器,是一种监督的分类算法.即使用带标签的训练数据,SVM得到优化的超平面,使得两类之间的距离最大,这样有什么好处呢?显而遇见,这样可以降低噪声干扰,因为超平面到数据点的距离是最大距离的一半,只要噪声扰动不要越过超平面即可. 推导过程我就不详写了,因为这个页…
感知机.logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) .其学习策略为,定义(经验)损失函数并将损失函数最小化.通常,定义损失函数的策略是:==误分类点到分隔超平面的总距离==.[李航,2.2节] 如果没有误分点,则损失函数值是0. 感知机学习算法若采用不用的初始值或选取不同的误分类点,得到的分隔超平面可不同. logistic回归(对数几率回归): 逻辑回归和感知机一样,定义一个决策面(…
对偶的概念 https://blog.csdn.net/qq_34531825/article/details/52872819?locationNum=7&fps=1 拉格朗日乘子法.KKT条件 https://blog.csdn.net/mr_kktian/article/details/53750424 一.什么是SVM? SVM的英文全称是Support Vector Machines,我们叫它支持向量机.支持向量机是我们用于分类的一种算法.让我们以一个小故事的形式,开启我们的SVM之旅…
上节我们探讨了关于拉格朗日乘子和KKT条件.这为后面SVM求解奠定基础,本节希望通俗的细说一下原理部分. 一个简单的二分类问题例如以下图: 我们希望找到一个决策面使得两类分开.这个决策面一般表示就是WTX+b=0,如今的问题是找到相应的W和b使得切割最好.知道logistic分类 机器学习之logistic回归与分类的可能知道,这里的问题和那里的一样.也是找权值.在那里,我们是依据每个样本的输出值与目标值得误差不断的调整权值W和b来求得终于的解的.当然这样的求解最优的方式仅仅是当中的一种方式.那…
虽然已经学习了神经网络和深度学习并在几个项目之中加以运用了,但在斯坦福公开课上听吴恩达老师说他(在当时)更喜欢使用SVM,而很少使用神经网络来解决问题,因此来学习一下SVM的种种. 先解释一些概念吧: 矩阵二范数: ||w|| = sqrt(w'w) 跟室友探讨了一下,觉得对于n维列向量来说,二范数的意义是它到零点的距离. 支持向量机——即最优间隔分类器: 最优间隔分类器的最终目标就是让边界与数据点之间的间隔(距离)最大,间隔的标度有两种: 1. 函数间隔 γ^(i) = y(i) * (w'x…
Spark 优缺点分析 以下翻译自Scikit. The advantages of support vector machines are: (1)Effective in high dimensional spaces.在高维空间表现良好. (2)Still effective in cases where number of dimensions is greater than the number of samples.在数据维度大于样本点数时候,依然可以起作用 (3)Uses a su…