在Keras中用Bert进行情感分析】的更多相关文章

之前在BERT实战——基于Keras一文中介绍了两个库 keras_bert 和 bert4keras 但是由于 bert4keras 处于开发阶段,有些函数名称和位置等等发生了变化,那篇文章只用了 bert4keras 进行情感分析 于是这里新开了一篇文章将 2 个库都用一遍, bert4keras 也使用最新版本 本文所用bert4keras时间:2019-11-09 害怕 bert4keras 后续继续变化,需要稳定的可以先采用 keras_bert 数据集:https://github.…
# coding: utf-8 # In[1]: import urllib.request import os import tarfile # In[2]: url="http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" filepath="example/data/aclImdb_v1.tar.gz" if not os.path.isfile(filepath): result=url…
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/   neg.xls是这样的 pos.xls是这样的neg=pd.read_excel(‘neg.xls’,header=None,index=None) pos=pd.read_excel(‘pos.xls’,header=None,index=None) #读取训练语料完毕 pos[‘mark’]=1 neg[‘mark’]=0 #给训练语料贴上标签 pn=pd.conc…
今天Tony老师给大家带来的案例是Kaggle上的Twitter的情感分析竞赛.在这个案例中,将使用预训练的模型BERT来完成对整个竞赛的数据分析. 导入需要的库 import numpy as np import pandas as pd from math import ceil, floor import tensorflow as tf import tensorflow.keras.layers as L from tensorflow.keras.initializers impor…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:本文大多内容来自未出版的<数据挖掘之道>的情感分析章节.本书中总结情感分析算法主要分为两种:词典型+监督算法型. 监督算法型主要分别以下几个步骤: 构建训练+测试集+特征提取(TFIDF指标)+算法模型+K层交叉验证.可与博客对着看:R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等) ----------------…
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题. 通过这个情感分析的题目,我会整理做特征工程.参数调优和模型融合的方法,这一系列会有四篇文章.这篇文章整理文本特征工程的内容. 文本的特征工程主要包括数据清洗.特征构造.降维和特征选择等. 首先是数据清洗,比如去停用词.去非字母汉字的特殊字符.大写转小写.去掉html标签等. 然后…
情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性文本进行分析.处理.归纳和推理的过程.   本文将介绍情感分析中的情感极性(倾向)分析.所谓情感极性分析,指的是对文本进行褒义.贬义.中性的判断.在大多应用场景下,只分为两类.例如对于"喜爱"和"厌恶"这两个词,就属于不同的情感倾向.   本文将详细介绍如何使用深度学习…
最近尝试了一下中文的情感分析. 主要使用了Glove和LSTM.语料数据集采用的是中文酒店评价语料 1.首先是训练Glove,获得词向量(这里是用的300d).这一步使用的是jieba分词和中文维基. 2.将中文酒店评价语料进行清洗,并分词.分词后转化为词向量的表示形式. 3.使用LSTM网络进行训练. 最终的正确率在91%左右 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 1…
1.情感分析语料预处理 使用酒店评论语料,正面评论和负面评论各5000条,用BERT参数这么大的模型, 训练会产生严重过拟合,,泛化能力差的情况, 这也是我们下面需要解决的问题; 2.sigmoid二分类 回顾在BERT的训练中Next Sentence Prediction中, 我们取出$[cls]$对应的那一条向量, 然后把他映射成1个数值并用$sigmoid$函数激活: $$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (…
1. 概述 在情感分析的应用领域,例如判断某一句话是positive或者是negative的案例中,咱们可以通过传统的standard neuro network来作为解决方案,但是传统的神经网络在应用的时候是不能获取前后文字之间的关系的,不能获取到整个句子的一个整体的意思,只能通过每一个词的意思来最终决定一句话的情感,这显然是不合理的,导致的结果就是训练出来的模型质量可能不是很高.那么这里就需要用到LSTM来解决这个问题了,LSTM能够很好的表达出句子中词的关系,能将句子当做一个整体来看待,而…