题目链接: Lightoj  1038 - Race to 1 Again 题目描述: 给出一个数D,每次可以选择数D的一个因子,用数D除上这个因子得到一个新的数D,为数D变为1的操作次数的期望为多少? 解题思路: 概率DP咯,对于只知道期望是:E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn)的窝,拿这个题目没有一点办法.然后看了讨论版,发现总会有一些神人存在. 求操作次数的期望时,先设定第i个因子给期望的贡献为Ti,那么有:E = (T1 + T2 + T3…
题意:给定一个数 n,然后每次除以他的一个因数,如果除到1则结束,问期望是多少. 析:概率DP,可以用记忆公搜索来做,dp[i] = 1/m*sum(dp[j] + 1) + 1/m * (dp[i] + 1)  ==> dp[i] = (sum(dp[j]) + m) / (m-1).其中m是因数个数. 代码如下: #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #i…
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the heads facing down onto the table and the tails upward. For exactly mm times they select any kk of the coins and toss them into the…
luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点,现在从1号点开始走,每次等概率地选择出边,问到达n+1的步数期望 思路 用 \(F_{i,j}\) 代表从i到j的期望步数 由于期望的线性性质,所以 \(F_{i,k} + F_{k,j} = F_{i,j}\) 所以我们算出每个 \(F_{i,i+1}\) 即可 对于当前节点i,出度为 \(d_…
题目链接:https://vjudge.net/problem/LightOJ-1038 1038 - Race to 1 Again    PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Rimi learned a new thing about integers, which is - any positive integer greater than 1 can be divided b…
题意:1~100的格子,有n个传送阵,一个把进入i的人瞬间传送到tp[i](可能传送到前面,也可能是后面),已知传送阵终点不会有另一个传送阵,1和100都不会有传送阵.每次走都需要掷一次骰子(1~6且可能性一样),掷多少走多少,目的地超出100重掷,问你走到100所需掷骰子的期望. 思路:概率DP肯定的,但是会往前传送就很难直接算.用DP[i]代表从i走到100的期望. 那么如果i没有传送阵,则有:DP[i] = 1 / 6 * sum(DP[i + j]) + 1,1<= j <= 6,如果…
表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好了,这样求出来的就是最后的概率.那么期望呢,就是这个概率*数值就行了.但是有时候这么绕来绕去太麻烦了,我们干脆就逆过来.然后我们发现,根据期望的定义,逆过来以后反正做结果并没有太大的改变,dp从n~1就可以了,并且每次都加上数值,然后在for的途中,这个数值是会不断的乘以概率的,所以期望适合用逆推的…
https://vjudge.net/problem/LightOJ-1038 题意:给出一个数n,每次选择n的一个约数m,n=n/m,直到n=1,求次数的期望. 思路:d[i]表示将i这个数变成1的次数期望. 现在对于D来说,d[D]=1/cnt*{(d[D/1]+1)+(d[D/x1]+1)+(d[D/x2]+1)....+(D[D/D]+1)} 化简得 d[D]=1/(cnt-1)*(d[D/1]+d[D/x1]+...d[D/D]+cnt) #include<iostream> #in…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1038 题意是:给你一个N (1 ≤ N ≤ 105) 每次N都随机选一个因子d,然后让N=N/d, 求N变成1的次数的期望: 当 N = 2 时 2有两个因子:1,2 E[2] = E[1]/2 + E[2]/2 + 1;因此可以求出E[2]; 当N = 8 时 8有4个因子1 2 4 8; E[8] = E[1]/4 + E[2]/4 + E[4]/4 + E[8]/4+ 1;因此…
题目:戳这里 题意:一个数字n不断迭代地除以自身的因子得到1.求这个过程中操作除法次数的期望. 解题思路: 求概率基本都是从一个最基础的状态开始延伸推出公式,得出答案.因为每个数都有个共同的最终状态1,所以我们从1向n推(注意用到期望的可加性,可加性不需要事件相互独立.可以推出期望公式:E=1/n * 1 + (n - 1)/n *(1 + E1 + ... + En)Ei表示D除以一个除数后值为Di时,Di的期望.(第一道自己ac的该类型题目,记录一下 附ac代码: 1 #include <b…